ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Cellular Physiology 163 (1995), S. 137-144 
    ISSN: 0021-9541
    Keywords: Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Medicine
    Notes: Bafilomycin A1, a specific inhibitor of H+-ATPases of the vacuolar type, was in the present study shown, at similar concentrations, to induce secretion of lysosomal enzyme and to elevate lysosomal pH in mouse macrophages. These results lend support to the previous suggestion of a triggering role for an increase in lysosomal pH and a permissive role for cytosolic pH in the exocytosis of macrophage lysosomal enzyme. Vacuolar H+-ATPases are present in the macrophage plasma membrane as well as in intracellular membranes, for example, those of the lysosomal and phagosomal compartments. Phagosomal acidification was shown to be achieved in part by a mechanism with a similar sensitivity to bafilomycin A1 as lysosomal H+ transport and in part by an early, bafilomycin A1-insensitive mechanism. We found a lesser sensitivity towards bafilomycin A1 of the lysosomal and phagosomal H+-ATPase than that localized in the plasma membrane, indicating differences among H+-ATPases at the subcellular level. Also, by attempts to mobilize lysosomal H+-ATPase to the plasma membrane, support was obtained for the notion that subcellular H+-ATPase populations differ and thus possibly could be differentially regulated. © 1995 Wiley-Liss, Inc.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 0268-2605
    Keywords: magnetization reversal ; iron oxide particles ; SQUID ; atomic force microscopy ; Chemistry ; Industrial Chemistry and Chemical Engineering
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: We report first measurements of the magnetization reversal of monodisperse 30 nm and 50 nm ferromagnetic Fe3O4 particles. These particles are produced in a carrier gas as an aerosol by spray pyrolysis. After production and size selection, they are precipitated on a silicon chip with a niobium SQUID (superconducting quantum interference device) incorporated on its surface. By changing a magnetic field in the plane of the SQUID, we can measure the magnetization reversal of the particles by the flux they induce into the SQUID. The angular dependence of this reversal is determined by rotating the magnetic field around the SQUID. Scanning electron microscope (SEM) images have confirmed the particle size and revealed the position of the collected particles. If the particle concentration is too high, we cannot detect changes in the magnetic moment of a single particle, but measure the magnetic properties of the whole assembly. If only a few particles are found on the SQUID loop the angular dependence of the magnetic reversal of a single particle can be measured; this result is compared with a simple model of magnetization reversal. © 1998 John Wiley & Sons, Ltd.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...