ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2019-06-28
    Description: Research was conducted to determine the feasibility of replacing the Solid Rocket Boosters on the existing Space Shuttle Launch Vehicle (SSLV) with Liquid Rocket Boosters (LRB). As a part of the LRB selection process, a series of wind tunnel tests were conducted along with aero studies to determine the effects of different LRB configurations on the SSLV. Final results were tabulated into increments and added to the existing SSLV data base. The research conducted in this study was taken from a series of wind tunnel tests conducted at Marshall's 14-inch Trisonic Wind Tunnel. The effects on the axial force (CAF), normal force (CNF), pitching moment (CMF), side force (CY), wing shear force (CSR), wing torque moment (CTR), and wing bending moment (CBR) coefficients were investigated for a number of candidate LRB configurations. The aero effects due to LRB protuberances, ET/LRB separation distance, and aft skirts were also gathered from the tests. Analysis was also conducted to investigate the base pressure and plume effects due to the new booster geometries. The test results found in Phases 1 and 2 of wind tunnel testing are discussed and compared. Preliminary LRB lateral/directional data results and trends are given. The protuberance and gap/skirt effects are discussed. The base pressure/plume effects study is discussed and results are given.
    Keywords: SPACECRAFT PROPULSION AND POWER
    Type: NASA-CR-183654 , NAS 1.26:183654 , LMSC-HEC-TR-F268592
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-07-13
    Description: A prototype Electric Power Management and Thruster Control System for a 30 cm ion thruster has been built and is ready to support a first mission application. The system meets all of the requirements necessary to operate a thruster in a fully automatic mode. Power input to the system can vary over a full two to one dynamic range (200 to 400 V) for the solar array or other power source. The Power Management and Control system is designed to protect the thruster, the flight system and itself from arcs and is fully compatible with standard spacecraft electronics. The system is designed to be easily integrated into flight systems which can operate over a thermal environment ranging from 0.3 to 5 AU. The complete Power Management and Control system measures 45.7 cm x 15.2 cm x 114.8 cm and weighs 36.2 kg. At full power the overall efficiency of the system is estimated to be 87.4 percent. Three systems are currently being built and a full schedule of environmental and electrical testing is planned.
    Keywords: SPACECRAFT PROPULSION AND POWER
    Type: AIAA PAPER 78-685 , International Electric Propulsion Conference; Apr 25, 1978 - Apr 27, 1978; San Diego, CA; US
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-13
    Description: A prototype electric power management and thruster control system for a 30 cm ion thruster is described. The system meets all of the requirements necessary to operate a thruster in a fully automatic mode. Power input to the system can vary over a full two to one dynamic range (200 to 400 V) for the solar array or other power source. The power management and control system is designed to protect the thruster, the flight system and itself from arcs and is fully compatible with standard spacecraft electronics. The system is easily integrated into flight systems which can operate over a thermal environment ranging from 0.3 to 5 AU. The complete power management and control system measures 45.7 cm (18 in.) x 15.2 cm (6 in.) x 114.8 cm (45.2 in.) and weighs 36.2 kg (79.7 lb). At full power the overall efficiency of the system is estimated to be 87.4 percent. Three systems are currently being built and a full schedule of environmental and electrical testing is planned.
    Keywords: SPACECRAFT PROPULSION AND POWER
    Type: NASA-TM-78862 , E-9593 , Intern. Elec. Propulsion Conf.; Apr 25, 1978 - Apr 27, 1978; San Diego, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-07-13
    Description: Three approaches are presented for packaging the elements of a 30 cm ion thruster subsystem into a modular thrust subsystem. The individual modules, when integrated into a conceptual solar electric propulsion module are applicable to a multimission set of interplanetary flights with the space shuttle interim upper stage as the launch vehicle. The emphasis is on the structural and thermal integration of the components into the modular thrust subsystems. Thermal control for the power processing units is either by direct radiation through louvers in combination with heat pipes or an all heat pipe system. The propellant storage and feed system and thruster gimbal system concepts are presented. The three approaches are compared on the basis of mass, cost, testing, interfaces, simplicity, reliability, and maintainability.
    Keywords: SPACECRAFT PROPULSION AND POWER
    Type: NASA-TM-X-73502 , E-8800 , Intern. Elec. Propulsion Conf.; Nov 15, 1976 - Nov 17, 1976; Key Biscayne, FL; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-07-13
    Description: Solar Electric Propulsion (SEP) is currently being studied for possible use in a number of near earth and planetary missions. The thruster subsystem for these missions would consist of 30 centimeter ion thrusters with Power Processor Units (PPU) clustered in assemblies of from two to ten units. A preliminary design study of the electronic packaging of the PPU has been completed at Lewis Research Center of NASA. This study evaluates designs meeting the competing requirements of low system weight and overall mission flexibility. These requirements are evaluated regarding structural and thermal design, electrical efficiency, and integration of the electrical circuits into a functional PPU layout.
    Keywords: SPACECRAFT PROPULSION AND POWER
    Type: NASA-TM-X-71686 , E-8282 , Elect Porpulsion Conf; Mar 19, 1975 - Mar 21, 1975; New Orleans, LA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-07-13
    Description: Solar Electric Propulsion (SEP) is currently being studied for possible use in a number of near-earth and planetary missions. Thruster systems for these missions could be integrated directly into a spacecraft or modularized into a Thruster Sub-System Module (TSSM). A TSSM for electric propulsion missions would consist of a 30-cm ion thruster, thruster gimbal system, propellant storage and feed system, associated Power Processing Unit (PPU), thermal control system and complete supporting structure. The TSSM would be wholly self-contained and be essentially a plug-in or strap-on electric stage with simple mechanical, thermal, electrical and propellant interfaces. The TSSM described in this report is designed for a broad range of missions requiring from two to ten TSSM's mounted in a 2 by x configuration. The thermal control system is designed to accommodate waste heat from the power processor based on realistic efficiencies when the TSSM is operating from 0.7 to 3.5 AU's. The modules are 0.61 M (2 ft) wide by 2.29 M (7.5 ft) long and have a dry weight including propellant tank of 54.4 kg (120 lb). The propellant tank will hold 145.1 kg (320 lb) of mercury.
    Keywords: SPACECRAFT PROPULSION AND POWER
    Type: NASA-TM-X-71683 , E-8276 , 11 Elec. Propulsion Conf; Mar 19, 1975 - Mar 21, 1975; New Orleans, LA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-07-13
    Description: Solar Electric Propulsion (SEP) is currently being studied for possible use in a number of near earth and planetary missions. The thruster subsystem for these missions would consist of 30 centimeter ion thrusters with Power Processor Units (PPU) clustered in assemblies of from two to ten units. A preliminary design study of the electronic packaging of the PPU has been completed at Lewis Research Center of NASA. This study evaluates designs meeting the competing requirements of low system weight and overall mission flexibility. These requirements are evaluated regarding structural and thermal design, electrical efficiency, and integration of the electrical circuits into a functional PPU layout.
    Keywords: SPACECRAFT PROPULSION AND POWER
    Type: AIAA PAPER 75-403 , American Institute of Aeronautics and Astronautics, Electric Propulsion Conference; Mar 19, 1975 - Mar 21, 1975; New Orleans, LA
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-07-13
    Description: Three approaches are presented for packaging the elements of a 30 cm ion thrustor subsystem into a modular thrust subsystem. The individual modules, when integrated into a conceptual solar electric propulsion module are applicable to a multimission set of interplanetary flights with the Space Shuttle/Interim Upper Stage as the launch vehicle. The emphasis is on the structural and thermal integration of the components into the modular thrust subsystems. Thermal control for the power processing units is either by direct radiation through louvers in combination with heat pipes of an all heat pipe system. The propellant storage and feed system and thrustor gimbal system concepts are presented. The three approaches are compared on the basis of mass, cost, testing, interfaces, simplicity, reliability, and maintainability.
    Keywords: SPACECRAFT PROPULSION AND POWER
    Type: AIAA PAPER 76-1062 , International Electric Propulsion Conference; Nov 14, 1976 - Nov 17, 1976; Key Biscayne, FL
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-07-13
    Description: The thruster subsystem module (TSSM) considered for solar electric propulsion (SEP) missions is to consist of a 30-cm ion thruster, a thruster gimbal system, a propellant storage and feed system, a power processing unit, a modular thermal control system, and a modular support structure. TSSM design requirements are considered along with a TSSM general design approach. It is pointed out that a TSSM for SEP missions can be designed and built based on existing technology.
    Keywords: SPACECRAFT PROPULSION AND POWER
    Type: AIAA PAPER 75-406 , American Institute of Aeronautics and Astronautics, Electric Propulsion Conference; Mar 19, 1975 - Mar 21, 1975; New Orleans, LA
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...