ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2011-08-17
    Description: An investigation using a novel ion mass spectrometer for measuring the ionic composition of the solar wind from the ISEE-C spacecraft is described. The resolution and dynamic range of the instrument are sufficient to be able to resolve up to twelve individual ions or groups of ions. This will permit the solution of a number of fundamental problems related to solar abundances and the formation of the solar wind. The spectrometer is composed of a stigmatic Wien filter and hemispherical electrostatic energy analyzer. The use of curved electric field plates in the filter results in a substantial saving of weight with respect to a conventional filter of the same resolution and angular acceptance. The spectrometer is controlled by a microprocessor based on a special purpose computer which has three modes of operations: full and partial survey modes and a search mode. In the search mode, the instrument locks on to the solar wind. This allows four times the time resolution of the full survey mode and yields a full mass spectrum every 12.6 min.
    Keywords: SPACECRAFT INSTRUMENTATION
    Type: IEEE Transactions on Geoscience Electronics; GE-16; July 197
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-06-28
    Description: The Giotto Ion Mass Spectrometer (IMS) consists of two sensors: one optimized for the outer and the other for the inner coma, with each obtaining complementary information in the region for which it is not optimized. The outer coma is characterized by the interaction between solar wind and comentary plasmas, the inner coma by the outflow of cometary neutrals and their ionization products. Both sensors feature mass imaging characteristics, permitting simultaneous measurements of several ion species by multidetector arrays. Resultant mass-per-charge resolution is greater than or = 20. Energy per charge, and the elevation and aximuth of incident ions are measured. Calibration and in-flight solar-wind data show that the IMS will meet its scientific goals for the Halley encounter.
    Keywords: SPACECRAFT INSTRUMENTATION
    Type: ESA The Giotto Mission: Its Scientific Investigations; p 129-148
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-06-27
    Description: The Ion Composition Experiment (ICE) on GEOS represents the first comprehensive attempt to measure the positive ion composition at high altitudes in the magnetosphere. Due to the heterogeneous nature of the magnetospheric plasma a novel mass spectrometer has been developed to cover the mass per charge range from H-1(+) to beyond Ba-138(+) and the energy per charge range from 0 to 16 keV/e. The ICE consists primarily of a cylindrical electrostatic analyzer followed by a curved analyzer incorporating crossed magnetic and electric fields. This combination has limited angular and energy focusing properties, but it maintains a mass resolution of about 4 over a wide range in energy and mass, sufficient for the objectives of measuring plasmas of both solar and terrestrial origin. High sensitivity and low background should allow measurements of rarer ion constituents down to flux levels of 0.01 ions/sq cm sec ster eV. A sophisticated electronics combined with powerful ground computer and telecommand systems allow for very efficient scanning of the mass-energy space.
    Keywords: SPACECRAFT INSTRUMENTATION
    Type: Space Science Instrumentation; 2; Sept
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-08-28
    Description: The Solar Wind Ion Composition Spectrometer (SWICS) on Ulysses is designed to determine uniquely the elemental and ionic-charge composition, and the temperatures and mean speeds of all major solar-wind ions, from H through Fe, at solar wind speeds ranging from 175 km/s (protons) to 1280 km/s (Fe(8+)). The instrument, which covers an energy per charge range from 0.16 to 59.6 keV/e in about 13 min, combines an electrostatic analyzer with postacceleration, followed by a time-of-flight and energy measurement. The measurements made by SWICS will have an impact on many areas of solar and heliospheric physics, in particular providing essential and unique information on: (1) conditions and processes in the region of the corona where the solar wind is accelerated; (2) the location of the source regions of the solar wind in the corona; (3) coronal heating processes; (4) the extent and causes of variations in the composition of the solar atmosphere; (5) plasma processes in the solar wind; (6) the acceleration of energetic particles in the solar wind; (7) the thermalization and acceleration of interstellar ions in the solar wind, and their composition; and (8) the composition, charge states, and behavior of the plasma in various regions of the Jovian magnetosphere.
    Keywords: SPACECRAFT INSTRUMENTATION
    Type: Astronomy and Astrophysics Supplement Series (ISSN 0365-0138); 92; 2, Ja
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-07-12
    Description: The design of the Giotto ion mass spectrometer (IMS) system, its calibration, and the initial flight performance are discussed. The IMS system consists of two sensors: one optimized for the outer coma, the other for the inner coma, with each sensor obtaining complementary information in the region for which it was not optimized. Both sensors feature mass-imaging characteristics, permitting simultaneous measurements of several ion species by means of multi-detector arrays, with resultant mass per charge resolution of not less than 20. In addition to mass per charge, the energy per charge and the elevation and azimuth of the incident ions were measured during the Giotto flight.
    Keywords: SPACECRAFT INSTRUMENTATION
    Type: Journal of Physics E - Scientific Instruments (ISSN 0022-3735); 20; 759-767
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...