ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • NUMERICAL ANALYSIS  (1)
  • SPACECRAFT DESIGN, TESTING AND PERFORMANCE  (1)
Collection
Keywords
Years
  • 1
    Publication Date: 2019-06-28
    Description: This report summarizes the damage analyses performed on the tether cable used for the tethered satellite system (TSS), for the damage that could be caused by meteoroid or orbital debris impacts. The TSS consists of a tethered satellite deployer and a tethered satellite. The analytical studies were performed at Marshall Space Flight Center (MSFC) with the results from the following tests: (1) hypervelocity impact tests to determine the 'critical' meteoroid particle diameter, i.e., the maximum size of a meteoroid particle which can impact the tether cable without causing 'failure'; (2) electrical resistance tests on the damaged and undamaged tether cable to determine if degradation of current flow occurred through the damaged tether cables; and (3) tensile load tests to verify the load carrying capability of the damaged tether cables. Finally, the HULL hydrodynamic computer code was used to simulate the hypervelocity impact of the tether cable by particles at velocities higher than can be tested, to determine the extent of the expected tether damage.
    Keywords: SPACECRAFT DESIGN, TESTING AND PERFORMANCE
    Type: NASA-TM-108404 , NAS 1.15:108404
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-06-28
    Description: Five single plate penetration equations are compared for accuracy and effectiveness. These five equations are two well-known equations (Fish-Summers and Schmidt-Holsapple), two equations developed by the Apollo project (Rockwell and Johnson Space Center (JSC), and one recently revised from JSC (Cour-Palais). They were derived from test results, with velocities ranging up to 8 km/s. Microsoft Excel software was used to construct a spreadsheet to calculate the diameters and masses of projectiles for various velocities, varying the material properties of both projectile and target for the five single plate penetration equations. The results were plotted on diameter versus velocity graphs for ballistic and spallation limits using Cricket Graph software, for velocities ranging from 2 to 15 km/s defined for the orbital debris. First, these equations were compared to each other, then each equation was compared with various aluminum projectile densities. Finally, these equations were compared with test results performed at JSC for the Marshall Space Flight Center. These equations predict a wide variety of projectile diameters at a given velocity. Thus, it is very difficult to choose the 'right' prediction equation. The thickness of a single plate could have a large variation by choosing a different penetration equation. Even though all five equations are empirically developed with various materials, especially for aluminum alloys, one cannot be confident in the shield design with the predictions obtained by the penetration equations without verifying by tests.
    Keywords: NUMERICAL ANALYSIS
    Type: NASA-TM-103565 , NAS 1.15:103565
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...