ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2013-08-31
    Description: An automated method for developing and assessing spacecraft and instrument command schedules is presented for the Sea-viewing Wide Field-of-view Sensor (SeaWiFS) project. SeaWiFS is to be carried on the polar-orbiting SeaStar satellite in 1995. The primary goal of the SeaWiFS mission is to provide global ocean chlorophyll concentrations every four days by employing onboard recorders and a twice-a-day data downlink schedule. Global Area Coverage (GAC) data with about 4.5 km resolution will be used to produce the global coverage. Higher resolution (1.1 km resolution) Local Area Coverage (LAC) data will also be recorded to calibrate the sensor. In addition, LAC will be continuously transmitted from the satellite and received by High Resolution Picture Transmission (HRPT) stations. The methods used to generate commands for SeaWiFS employ numerous hierarchical checks as a means of maximizing coverage of the Earth's surface and fulfilling the LAC data requirements. The software code is modularized and written in Fortran with constructs to mirror the pre-defined mission rules. The overall method is specifically developed for low orbit Earth-observing satellites with finite onboard recording capabilities and regularly scheduled data downlinks. Two software packages using the Interactive Data Language (IDL) for graphically displaying and verifying the resultant command decisions are presented. Displays can be generated which show portions of the Earth viewed by the sensor and spacecraft sub-orbital locations during onboard calibration activities. An IDL-based interactive method of selecting and testing LAC targets and calibration activities for command generation is also discussed.
    Keywords: SPACE COMMUNICATIONS, SPACECRAFT COMMUNICATIONS, COMMAND AND TRACKING
    Type: Third International Symposium on Space Mission Operations and Ground Data Systems, Part 1; p 607-614
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-06-28
    Description: Calibration and validation Analysis Tool of Local Area Coverage (CATLAC) is an analysis package for selecting and graphically displaying Earth and space targets for calibration and validation activities on a polar orbiting satellite. The package is written in the Interactive Data Language (IDL) and includes a graphical user interface. Although it is designed specifically for the Sea-viewing Wide Field-of-view Sensor (SeaWiFS) mission, the package can be used for analysis on other Earth-viewing missions. An individual can use text or graphical methods in CATLAC to select Earth targets to be scanned by a satellite. Additional onboard calibration activities (such as observations of the moon, or solar irradiance from a solar diffuser), which use data recorder time, can also be specified. All information pertinent to the creation of a command schedule can be written to a file which is read by a command scheduler. The scheduler can be invoked and the Local Area Coverage (LAC) recording periods can be visually verified using CATLAC. The schedule can also be verified by examining record and error files written by the scheduler.
    Keywords: SPACE COMMUNICATIONS, SPACECRAFT COMMUNICATIONS, COMMAND AND TRACKING
    Type: NASA-TM-104603 , REPT-94B00079 , NAS 1.15:104603
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...