ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • SPACE BIOLOGY  (2)
Collection
Keywords
Years
  • 1
    Publication Date: 2019-08-28
    Description: The prominence of exobiology as a part of the NASA program in solar system exploration reached its peak during the Viking missions of the mid-1970's. Even before those missions were finished, the Exobiology Program had been transferred out of the Division responsible for solar system exploration, and many of the direct ties to future missions became more difficult to make, providing a bureaucratic impediment to the conduct of exobiology research in space. Early in 1993, the Exobiology Program was brought back in to the Solar System Exploration Division, as an integral part of NASA's program to study this and other solar systems. As such, the Program stands to gain from an overall broad investment in missions that will study Mars, small bodies such as asteroids and comets, and outer planetary bodies such as Saturn, Titan, and even Pluto. Additional opportunities may be forthcoming on the Moon and elsewhere in Earth-orbit. Ground-based studies will continue to be an important foundation for work in space, while additional effects will be continue to use ground-based astronomical instruments to study other planetary systems, and to search for life on planets around other stars. This paper provides a current planning and budgetary prospectus on the future of Exobiology in NASA.
    Keywords: SPACE BIOLOGY
    Type: Origins of Life and Evolution of the Biosphere (ISSN 0169-6149); 24; 2-4; p. 341
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-08-27
    Description: Discovery-class missions that are now planned, and those in the concept stage, have the potential to expand our knowledge of the origins and evolution of biogenic compounds, and ultimately, of the origins of life in the solar system. This class of missions, recently developed within NASA's Solar System Exploration Program, is designed to meet important scientific objectives within stringent guidelines--$150 million cap on development cost and a 3-year cap on the development schedule. The Discovery Program will effectively enable "faster, cheaper" missions to explore the inner solar system. The first two missions are Mars Environmental Survey (MESUR) Pathfinder and Near Earth Asteroid Rendezvous (NEAR). MESUR Pathfinder will be the first Discovery mission, with launch planned for November/December 1996. It will be primarily a technical demonstration and validation of the MESUR Program--a network of automated landers to study the internal structure, meteorology, and surface properties of Mars. Besides providing engineering data, Pathfinder will carry atmospheric instrumentation and imaging capabilities, and may deploy a microrover equipped with an alpha proton X-ray spectrometer to determine elemental composition, particularly the lighter elements of exobiological interest. NEAR is expected to be launched in 1998 and to rendezvous with a near-Earth asteroid for up to 1 year. During this time, the spacecraft will assess the asteroid's mass, size, density, map its surface topography and composition, determine its internal properties, and study its interaction with the interplanetary environment. A gamma ray or X-ray spectrometer will be used to determine elemental composition. An imaging spectrograph, with 0.35 to 2.5 micron spectral range, will be used to determine the asteroid's compositional disbribution. Of the 11 Discovery mission concepts that have been designated as warranting further study, several are promising in terms of determining the composition and chemical evolution of organic matter on small planetary bodies. The following mission concepts are of particular interest to the Exobiology Program: Cometary coma chemical composition, comet nucleus tour, near earth asteroid returned sample, small missions to asteroids and comets, and solar wind sample return. The following three Discovery mission concepts that have been targeted for further consideration are relevant to the study of the evolution of biogenic compounds: Comet nucleus penetrator, mainbelt asteroid rendezvous explorer, and the Mars polar Pathfinder.
    Keywords: SPACE BIOLOGY
    Type: Origins of Life and Evolution of the Biosphere (ISSN 0169-6149); 24; 2-4; p. 326-327
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...