ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2013-08-31
    Description: A previously developed program, which includes all electronic interactions thought to be important, does not correctly predict the value of electron mobility in mercury cadmium telluride particularly near room temperature. Part of the reason for this discrepancy is thought to be the way screening is handled. It seems likely that there are a number of contributors to errors in the calculation. The objective is to survey the calculation, locate reasons for differences between experiment and calculation, and suggest improvements.
    Keywords: SOLID-STATE PHYSICS
    Type: Alabama Univ., Research Reports: 1988 NASA(ASEE Summer Faculty Fellowship Program; 30 p
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2013-08-31
    Description: A previously developed code for calculating the mobility of charge carriers in narrow bandgap semiconductors does not predict the correct temperature dependence in all cases. It is thought that this is due to the way the electronic screening of the carriers is treated in the model. The objective of this research is to improve the handling of the screening by going beyond the current first Born approximation. Much of this work is directly related to the alloy semiconductor Hg sub 1-xCd sub xTe which is important for infrared detectors and is a good candidate for microgravity crystal growth. The principal conclusion, so far, is that the major difficulty is probably the treatment of short range screening at higher temperatures.
    Keywords: SOLID-STATE PHYSICS
    Type: NASA. Marshall Space Flight Center, Research Reports: 1987 NASA(ASEE Summer Faculty Fellowship Program; 28 p
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-13
    Description: The project has evolved to that of using Green's functions to predict properties of deep defects in narrow gap materials. Deep defects are now defined as originating from short range potentials and are often located near the middle of the energy gap. They are important because they affect the lifetime of charge carriers and hence the switching time of transistors. We are now moving into the arena of predicting formation energies of deep defects. This will also allow us to make predictions about the relative concentrations of the defects that could be expected at a given temperature. The narrow gap materials mercury cadmium telluride (MCT), mercury zinc telluride (MZT), and mercury zinc selenide (MZS) are of interest to NASA because they have commercial value for infrared detecting materials, and because there is a good possibility that they can be grown better in a microgravity environment. The uniform growth of these crystals on earth is difficult because of convection (caused by solute depletion just ahead of the growing interface, and also due to thermal gradients). In general it is very difficult to grow crystals with both radial and axial homogeneity.
    Keywords: SOLID-STATE PHYSICS
    Type: NASA-CR-197835 , NAS 1.26:197835
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-07-13
    Description: We use a Green's function technique to calculate the position of deep defects in narrow gap semiconductors. We consider substitutional (including antisite), vacancy, and interstitial (self and foreign) deep defects. We also use perturbation theory to look at the effect of nonparabolic bands on shallow defect energies and find nonparabolicity can increase the binding by 10 percent or so. We consider mercury cadmium telluride (MCT), mercury zinc telluride (MZT), and mercury zinc selenide (MZS). For substitutional and interstitial defects we look at the situation with and without relaxation. For substitutional impurities in MCT, MZT, and MZS, we consider x (the concentration of Cd or Zn) in the range 0.1 less than x less than 0.3 and also consider appropriate x so E(sub g) = 0.1 eV for each of the three compounds. We consider several cation site s-like deep levels and anion site p-like levels. For E(sub g) = 0.1 eV, we also consider the effects of relaxation. Similar comments apply to the interstitial deep levels whereas no relaxation is considered for the ideal vacancy model. Relaxation effects can be greater for the interstitial than the substitutional cases. Specific results are given in figures and tables and comparison to experiment is made in a limited number of cases. We find, for example, that I, Se, S, Rn, and N are possible cation site, s-like deep levels in MCT and Zn and Mg are for anion site, p-like levels (both levels for substitutional cases). The corresponding cation and anion site levels for interstitial deep defects are (Au, Ag, Hg, Cd, Cu, Zn) and (N, Ar, O, F). For the substitutional cases we have some examples of relaxation moving the levels into the band gap, whereas for the interstitial case we have examples where relaxation moves it out of the band gap. Future work involves calculating the effects of charge state interaction and seeing the effect of relaxation on vacancy levels.
    Keywords: SOLID-STATE PHYSICS
    Type: NASA-CR-197217 , NAS 1.26:197217
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-07-13
    Description: The study of point defects in semiconductors has a long and honorable history. In particular, the detailed understanding of shallow defects in common semiconductors traces back to the classic work of Kohn and Luttinger. However, the study of defects in narrow gap semiconductors represents a much less clear story. Here, both shallow defects (caused by long range potentials) and deep defects (from short range potentials) are far from being completely understood. In this study, all results are calculational and our focus is on the chemical trend of deep levels in narrow gap semiconductors. We study substitutional (including antisite), interstitial and ideal vacancy defects. For substitutional and interstitial impurities, the efects of relaxation are included. For materials like Hg(1-x)Cd(x)Te, we study how the deep levels vary with x, of particular interest is what substitutional and interstitial atoms yield energy levels in the gap i.e. actually produce deep ionized levels. Also, since the main technique utilized is Green's functions, we include some summary of that method.
    Keywords: SOLID-STATE PHYSICS
    Type: NASA-CR-193568 , NAS 1.26:193568
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-07-13
    Description: The tasks that we have accomplished are discussed. An extra task was a calculation comparing electron mobilities in Mercury Manganese Telluride with Mercury Cadmium Telluride given in 1H. We then list the reports and papers produced and follow that with either abstracts or the papers themselves. In one key paper we obtain good results between experiment and theory in Mercury Zinc Telluride and also find it typically has mobilities competitive with Mercury Cadmium Telluride. In the Appendix we have a relatively complete set of references.
    Keywords: SOLID-STATE PHYSICS
    Type: NASA-CR-190751 , NAS 1.26:190751
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-07-13
    Description: Research into the properties of narrow band gap materials during the period 15 Jun. to 15 Dec. 1991 is discussed. Abstracts and bibliographies from papers presented during this period are reported. Graphs are provided.
    Keywords: SOLID-STATE PHYSICS
    Type: NASA-CR-189503 , NAS 1.26:189503
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-07-13
    Description: The program was improved by reprogramming it so it will run on both a SUN and a VAX. Also it is easily transportable as it is on a disk for use on a SUN. A computer literature search resulted in some improved parameters for Hg(1-x)Cd(x)Te and a table of parameters for Hg(1-x)Zn(x)Te. The effects of neutral defects were added to the program, and it was found, as expected, that they contribute very little to the mobility at temperatures of interest. The effect were added of varying the following parameters: dielectric constants, screening parameters, disorder energies, donor and acceptor concentrations, momentum matrix element, different expressions for energy gap, and transverse effective charge.
    Keywords: SOLID-STATE PHYSICS
    Type: NASA-CR-188212 , NAS 1.26:188212
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...