ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2013-08-31
    Description: Microstructure of Yittria Stabilized Zirconia (YSZ) and Strontium Titanate (STO) of radio frequency magnetron sputtered buffer layers was studied at various sputtering conditions on Si (100), Sapphire and LaAlO3 (100) substrates. The effect of substrate temperatures up to 800 C and sputtering gas pressures in the range of 50 mTorr. of growth conditions was studied. The buffer layers of YSZ and STO showed a strong tendency for columnar growth was observed above 15 mTorr sputtering gas pressure and at high substrate temperatures. Post annealing of these films in oxygen atmosphere reduced the oxygen deficiency and strain generated during growth of the films. Strong c-axis oriented superconducting YBa2Cu3O7-x (YBCO) thin films were obtained on these buffer layers using pulsed laser ablation technique. YBCO films deposited on multilayers of YSZ and STO were shown to have better superconducting properties.
    Keywords: SOLID-STATE PHYSICS
    Type: NASA. Johnson Space Center, Proceedings of the 4th International Conference and Exhibition: World Congress on Superconductivity, Volume 2; p 770-77
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2013-08-31
    Description: The effect of Nb2O5 and V2O5 addition on the superconducting properties and microstructure of YBa2Cu3O(y) has been studied in thin films. Polycrystalline targets for laser ablation were prepared by mixing high purity V2O5 or Nb2O5 powders with a well characterized YBa2Cu3O(y) powder in the range 0 to 4 wt percent by solid state reaction method. Thin films (approximately 1500 A thickness) of the above targets were grown on (100) SrTiO3 (STO) and (100) LaAlO3 (LAO) substrates at 700 C temperature by pulsed laser deposition (PLD) technique. In the case of Nb2O5 addition we have noticed an increase in J(sub c) up to 0.5 wt percent and higher additive concentration (greater than 0.5 wt percent) have degraded the superconducting properties. However, in the case of V2O3 addition, there is an improvement in current density and microstructural properties up to 1 wt percent and the superconducting properties degrade for concentrations greater than 1 wt percent. The best J(sub c) for 0.5 wt percent of Nb2O5 added YBCO thin film is 1.6 x 10(exp 6) A/sq cm and for that of V2O5 added sample is 3.4 x 10(exp 6) A/sq cm at 77 K as compared to the pure YBa2Cu3O(y) (YBCO) film J(sub c) (1.2 x 10(exp 6) A/sq cm) observed on STO substrates. The reason for improvement in J(sub c) and microstructural properties in the case of V2O5 addition could be due to the low melting of V2O5 (690 C) which can act as a very good surfactant during deposition. Over all, we have realized that Nb2O5 addition or V2O5 addition to YBCO have shown significant improvement over the undoped YBa2Cu3O(7-x) films grown under identical conditions.
    Keywords: SOLID-STATE PHYSICS
    Type: NASA. Johnson Space Center, Proceedings of the 4th International Conference and Exhibition: World Congress on Superconductivity, Volume 1; p 241-24
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2013-08-31
    Description: Effect of Niobium substitution at the copper site in YBa2Cu3O(7-x) was studied in thin film form. The films were deposited by laser ablation technique using the targets of the YBa2Cu(3-x)Nb(x)O(y) where x = 0.0, 0.025, 0.05, 0.1, 0.2, 0.4, 0.8 and 1.0 under identical deposition conditions on SrTiO3 (100) substrates. Films were characterized by XRD, resistivity, I-V and J(sub c) measurements. Films made from x = 0.025 and 0.05 concentrations of Nb substituted targets showed relatively improved superconducting properties compared to that of undoped films. the best J(sub c) realized for x - 0.025 Nb concentration was 1.8 x 10(exp 6) A/sq cm and for 0.05 Nb concentration it was 3.2 x 10(exp 6) A/sq cm at 77 K. However, degradation of the superconducting properties, with the increase of x is greater than or equal to 0.1 Nb concentration and drastic suppression and complete loss of superconductivity was noticed for x is greater than or equal to 0.4. The growth of impurity phase YBa2NbO6 for x = 0.1 and above of Nb concentration was noted from XRD (X-Ray Diffraction) patterns. However, the site occupancy of Nb could not be confirmed from these studies.
    Keywords: SOLID-STATE PHYSICS
    Type: NASA. Johnson Space Center, Proceedings of the 4th International Conference and Exhibition: World Congress on Superconductivity, Volume 2; p 762-76
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...