ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2019-06-27
    Description: A computational model is developed which describes the evolution and propagation of an ionizing front (negative streamer) in solid materials. The ionization front consists of drifting avalanching electrons moving self-consistently under the influence of their own space-charge field together with an applied external field. The required input information for the model consists of the functional dependence of the macroscopic transport coefficients on the local electric field, the initial conditions for beginning the calculation, and the strength of the applied field. A computational approach for specifying the transport coefficients and initional conditions is also described. The approach has been implemented by constructing three computer codes which sequentially interface, beginning with single electron scattering, and ending with streamer development. Computational results are presented for model calculations in Teflon. The overall model is perceived to provide a picture of the initiation phase of a propagating discharge in electron-irradiated dielectrics.
    Keywords: SOLID-STATE PHYSICS
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-06-28
    Description: By treating the emission of optical phonons as a Markov process, a simple analytic method is developed for calculating the electronic ionization rate per unit length for dielectrics. The effects of scattering from acoustic and optical phonons are neglected. The treatment obtains universal functions in recursive form, the theory depending on only two dimensionless energy ratios. A comparison of the present work with other numerical approaches indicates that the effect of scattering becomes important only when the electric potential energy drop in a mean free path for optical-phonon emission is less than about 25% of the ionization potential. A comparison with Monte Carlo results is also given for Teflon.
    Keywords: SOLID-STATE PHYSICS
    Type: Journal of Applied Physics; 52; May 1981
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-13
    Description: Using a previously developed set of codes (SEMC, CASCAD, ACORN), a parametric study was performed to quantify the parameters which describe the development of a single electron indicated avalanche into a negative tip streamer. The electron distribution function in Teflon is presented for values of the electric field in the range of four-hundred million volts/meter to four billon volts/meter. A formulation of the scattering parameters is developed which shows that the transport can be represented by three independent variables. The distribution of ionization sites is used to indicate an avalanche. The self consistent evolution of the avalanche is computed over the parameter range of scattering set.
    Keywords: SOLID-STATE PHYSICS
    Type: NASA-CR-167977 , NAS 1.26:167977 , BEERS-1-82-16-23
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...