ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2023-07-04
    Description: This study presents new secondary ion mass spectrometry (SIMS) reference materials (RMs) for measuring water contents in nominally anhydrous orthopyroxenes from upper mantle peridotites. The enstatitic reference orthopyroxenes from spinel peridotite xenoliths have Mg#s between 0.83 and 0.86, Al2O3 ranges between 4.02 and 5.56 wt%, and Cr2O3 ranges between 0.21 and 0.69 wt%. Based on Fourier-transform infrared spectroscopy (FTIR) characterizations, the water contents of the eleven reference orthopyroxenes vary from dry to 249 ± 6 µg/g H2O. Using these reference grains, a set of orthopyroxene samples obtained from variably altered abyssal spinel peridotites from the Atlantic and Arctic Ridges as well as from the Izu-Bonin-Mariana forearc region was analyzed by SIMS and FTIR regarding their incorporation of water. The major element composition of the sample orthopyroxenes is typical of spinel peridotites from the upper mantle, characterized by Mg#s between 0.90 and 0.92, Al2O3 between 1.66 and 5.34 wt%, and Cr2O3 between 0.62 and 0.96 wt%. Water contents as measured by SIMS range from 68 ± 7 to 261 ± 11 µg/g H2O and correlate well with Al2O3 contents (r = 0.80) and Cr#s (r. = -0.89). We also describe in detail an optimized strategy, employing both SIMS and FTIR, for quantifying structural water in highly altered samples such as abyssal peridotite. This approach first analyzes individual oriented grains by polarized FTIR, which provides an overview of alteration. Subsequently, the same grain along with others of the same sample is measured using SIMS, thereby gaining information about homogeneity at the hand sample scale, which is key for understanding the geological history of these rocks.
    Description: Deutsche Forschungsgemeinschaft http://dx.doi.org/10.13039/501100001659
    Description: Bavarian Equal Opportunities Sponsorship - Realization Equal Opportunities for Women in Research and Teaching
    Description: Friedrich-Alexander-Universität Erlangen-Nürnberg (1041)
    Keywords: ddc:549 ; FTIR ; Hydrogen ; Nominally anhydrous minerals ; Orthopyroxene ; SIMS ; Spinel peridotite
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2021-06-30
    Description: Three tourmaline reference materials sourced from the Harvard Mineralogical and Geological Museum (schorl 112566, dravite 108796 and elbaite 98144), which are already widely used for the calibration of in situ boron isotope measurements, are characterised here for their oxygen and lithium isotope compositions. Homogeneity tests by secondary ion mass spectrometry (SIMS) showed that at sub‐nanogram test portion masses, their 18O/16O and 7Li/6Li isotope ratios are constant within ± 0.27‰ and ± 2.2‰ (1s), respectively. The lithium mass fractions of the three materials vary over three orders of magnitude. SIMS homogeneity tests showed variations in 7Li/28Si between 8% and 14% (1s), which provides a measure of the heterogeneity of the Li contents in these three materials. Here, we provide recommended values for δ18O, Δ’17O and δ7Li for the three Harvard tourmaline reference materials based on results from bulk mineral analyses from multiple, independent laboratories using laser‐ and stepwise fluorination gas mass spectrometry (for O), and solution multi‐collector inductively coupled plasma‐mass spectroscopy (for Li). These bulk data also allow us to assess the degree of inter‐laboratory bias that might be present in such data sets. This work also re‐evaluates the major element chemical composition of the materials by electron probe microanalysis and investigates these presence of a chemical matrix effect on SIMS instrumental mass fractionation with regard to δ18O determinations, which was found to be 〈 1.6‰ between these three materials. The final table presented here provides a summary of the isotope ratio values that we have determined for these three materials. Depending on their starting mass, either 128 or 512 splits have been produced of each material, assuring their availability for many years into the future.
    Description: Key Points: Three widely available tourmaline reference materials are characterized for δ7Li, δ17O and δ18O, while new EPMA and SIMS measurements refine their major element compositions. SIMS data document homogeneity for these isotope ratios. SIMS matrix effect causes bias of 1.9‰ between elbaite and schorl, whereas silicate glass shows even more severe bias.
    Description: U.S. National Science Foundation
    Description: Natural Environment Research Council http://dx.doi.org/10.13039/501100000270
    Description: US Department of Energy http://dx.doi.org/10.13039/100000015
    Keywords: 551.9 ; tourmaline ; lithium isotopes ; oxygen isotopes ; reference materials ; SIMS ; matrix effect
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-10-26
    Description: © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Wiedenbeck, M., Trumbull, R. B., Rosner, M., Boyce, A., Fournelle, J. H., Franchi, I. A., Halama, R., Harris, C., Lacey, J. H., Marschall, H., Meixner, A., Pack, A., von Strandmann, P. A. E. P., Spicuzza, M. J., Valley, J. W., & Wilke, F. D. H. Tourmaline reference materials for the In situ analysis of oxygen and lithium isotope ratio compositions. Geostandards and Geoanalytical Research, (2020), doi:10.1111/ggr.12362.
    Description: Three tourmaline reference materials sourced from the Harvard Mineralogical and Geological Museum (schorl 112566, dravite 108796 and elbaite 98144), which are already widely used for the calibration of in situ boron isotope measurements, are characterised here for their oxygen and lithium isotope compositions. Homogeneity tests by secondary ion mass spectrometry (SIMS) showed that at sub‐nanogram test portion masses, their 18O/16O and 7Li/6Li isotope ratios are constant within ± 0.27‰ and ± 2.2‰ (1s), respectively. The lithium mass fractions of the three materials vary over three orders of magnitude. SIMS homogeneity tests showed variations in 7Li/28Si between 8% and 14% (1s), which provides a measure of the heterogeneity of the Li contents in these three materials. Here, we provide recommended values for δ18O, Δ’17O and δ7Li for the three Harvard tourmaline reference materials based on results from bulk mineral analyses from multiple, independent laboratories using laser‐ and stepwise fluorination gas mass spectrometry (for O), and solution multi‐collector inductively coupled plasma‐mass spectroscopy (for Li). These bulk data also allow us to assess the degree of inter‐laboratory bias that might be present in such data sets. This work also re‐evaluates the major element chemical composition of the materials by electron probe microanalysis and investigates these presence of a chemical matrix effect on SIMS instrumental mass fractionation with regard to δ18O determinations, which was found to be 〈 1.6‰ between these three materials. The final table presented here provides a summary of the isotope ratio values that we have determined for these three materials. Depending on their starting mass, either 128 or 512 splits have been produced of each material, assuring their availability for many years into the future.
    Description: JWV and MJS (University of Wisconsin) are supported by the U.S. National Science Foundation (EAR‐1524336) and Department of Energy (DE‐FG02‐93‐ER14389). MR acknowledges the use of the NSF‐supported WHOI ICP‐MS facility and thanks Larry Ball and Jerzy Blusztajn for their assistance. Analyses at Bristol were supported by NERC grant NER/C510983/1. Finally, we wish to thank the Harvard Museum for ongoing support of such projects. Open access funding enabled and organized by ProjektDEAL.
    Keywords: Tourmaline ; Lithium isotopes ; Oxygen isotopes ; Reference materials ; SIMS ; Matrix effect
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...