ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 0749-503X
    Keywords: Candida albicans ; multidrug resistance ; Fluconazole ; antifungal drugs ; Life and Medical Sciences ; Genetics
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology
    Notes: The Candida albicans CDR1 gene encodes a member of the ABC-type family of multidrug transporters which has been shown to be involved in azole resistance. Using an in-frame gene fusion between the CDR1 open reading frame and the green fluorescent protein allele yEGFP3, an optimized derivative for its use in C. albicans, we show here how the CDR1-yEGFP3 gene expression is induced in response to azoles as well as to other structurally unrelated drugs like cycloheximide. Moderate increases were observed for calcofluor, canavanine, 5′-fluorcytosine, cilofungin and caffeine, while no induction was found for the antifungals benomyl and amphotericin B or hydrogen peroxide at subinhibitory concentrations. The use of confocal microscopy enabled us to localize the Cdr1p fusion protein at the cell periphery, thus suggesting a cytoplasmic membrane localization. These results suggest deregulation of CDR1 gene as a putative mechanism for the generation of azole resistance in this clinically important pathogenic fungus. © 1998 John Wiley & Sons, Ltd.
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Yeast 12 (1996), S. 1097-1105 
    ISSN: 0749-503X
    Keywords: SEC14 ; Candida albicans ; protein secretion ; pathogenic fungi ; PI-TP ; Life Sciences ; Life Sciences (general)
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology
    Notes: The yeast SEC14 gene product is required for the transport of proteins from the Golgi complex. We have cloned the homologous Candida albicans SEC14 gene (CaSEC14) by functional complementation of a Saccharomyces cerevisiae thermosensitive mutant, sec14. Some putative TATA boxes have been identified in CaSEC14 and, contrary to S. cerevisiae SEC14, no introns were found in the Candida homologue. Sequence analysis revealed that CaSec14p is a 301 amino acid protein, 67% identical to S. cerevisiae and Kluyveromyces lactis Sec14p, and 61% identical to the 300 amino-terminal residues of Yarrowia lipolytica Sec14p. Hydrophatic profile analysis of CaSec14p suggests a soluble protein without transmembrane domains, as has been described for the S. cerevisiae counterpart. While it was easy to disrupt one allele of SEC14 in C. albicans, repeated attempts to disrupt the second allele were unsuccessful, thus suggesting that the gene could be essential for vegetative growth in C. albicans. The sequence has been deposited in the EMBL data library under Accession Number X81937.
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...