ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Rotating Fluid Mechanics  (2)
  • Wiley-Blackwell  (2)
  • 1
    ISSN: 0271-2091
    Keywords: Finite Element Method ; Rotating Fluid Mechanics ; Slip Flow ; Engineering ; Engineering General
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Linearized multidimensional flow in a gas centrifuge can be described away from the ends by Onsager's pancake equation. However a rotating annulus results in a slightly different set of boundary conditions from the usual symmetry at the axis of rotation. The problem on an annulus becomes ill-posed and requires some special attention. Herein we treat axially linear inner and outer rotor temperature distributions and velocity slip. An existence condition for a class of non-trivial, one-dimensional solutions is given. New exact solutions in the infinite bowl approximation have been derived containing terms that are important at finite gap width and non-vanishing velocity slip. The usual one-dimensional, axially symmetric solution is obtained as a limit. Our previously reported finite element algorithm has been extended to treat this new class of problems. Effects of gap width, temperature and slip conditions are illustrated. Lastly, we report on the compressible, finite length, circular Couette flow for the first time.
    Additional Material: 8 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 0271-2091
    Keywords: Computer Extended Series ; Rotating Fluid Mechanics ; MACSYMA ; Engineering ; Engineering General
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: We have reformulated the general problem of internal flow in a modern, high speed gas centrifuge with sources and sinks in such a way as to obtain new, simple, rigorous closed form analytical solutions. Both symmetric and antisymmetric drives lead us to an ordinary differential equation in place of the usual inhomogeneous Onsager partial differential equation. Owing to the difficulties of exactly solving this sixth order, inhomogeneous, variable coefficient ordinary differential equation we appeal to the power of perturbation theory and techniques. Two extreme parameter regimes are identified, the so-called semi-long bowl approximation and a new short bowl approximation. Only the former class of problems is treated here. The long bowl solution for axial drive is the correct leading order term, just as for pure thermal drive. New O(1) results are derived for radial, drag and heat drives in two dimensions. Then regular asymptotic, even ordered power series expansions for the flow field are carried out on the computer to O(ε4) using MACSYMA. These approximations are valid for values of ε near unity. In the spirit of Van Dyke, one can carry out this expansion process, in theory, to apparently arbitrary order for arbitrary but finite decay length ratio. Curiously, the flows induced by axial and radial forces are proportional for asymptotically large source scale heights, x*. Corresponding isotope separation integral parameters will be given in a companion paper.
    Additional Material: 2 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...