ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Mathematical and statistical techniques  (2)
  • Rossby waves  (2)
Collection
Keywords
Years
  • 1
    facet.materialart.
    Unknown
    American Meteorological Society
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2009. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 39 (2009): 2910-2925, doi:10.1175/2009JPO4139.1.
    Description: The propagation of Rossby waves on a midlatitude β plane is investigated in the presence of density diffusion with the aid of linear hydrostatic theory. The search for wave solutions in a vertically bounded medium subject to horizontal (vertical) diffusion leads to an eigenvalue problem of second (fourth) order. Exact solutions of the problem are obtained for uniform background stratification (N), and approximate solutions are constructed for variable N using the Wentzel–Kramers–Brillouin method. Roots of the eigenvalue relations for free waves are found and discussed. The barotropic wave of adiabatic theory is also a solution of the eigenvalue problem as this is augmented with density diffusion in the horizontal or vertical direction. The barotropic wave is undamped as fluid parcels in the wave move only horizontally and are therefore insensitive to the vortex stretching induced by mixing. On the other hand, density diffusion modifies the properties of baroclinic waves of adiabatic theory. In the presence of horizontal diffusion the baroclinic modes are damped but their vertical structure remains unaltered. The ability of horizontal diffusion to damp baroclinic waves stems from its tendency to counteract the deformation of isopycnal surfaces caused by the passage of these waves. The damping rate increases (i) linearly with horizontal diffusivity and (ii) nonlinearly with horizontal wavenumber and mode number. In the presence of vertical diffusion the baroclinic waves suffer both damping and a change in vertical structure. In the long-wave limit the damping is critical (wave decay rate numerically equal to wave frequency) and increases as the square roots of vertical diffusivity and zonal wavenumber. Density diffusion in the horizontal or vertical direction reduces the amplitude of the phase speed of westward-propagating waves. Observational estimates of eddy diffusivities suggest that horizontal and vertical mixing strongly attenuates baroclinic waves in the ocean but that vertical mixing is too weak to notably modify the vertical structure of the gravest modes.
    Description: This work was supported by the U.S. National Science Foundation.
    Keywords: Rossby waves ; Extratropics ; Buoyancy ; Mixing
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    American Meteorological Society
    Publication Date: 2022-05-26
    Description: Author Posting. © American Meteorological Society, 2014. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 44 (2014): 2498–2523, doi:10.1175/JPO-D-13-0183.1.
    Description: This study examines the observability of a stratified ocean in a square flat basin on a midlatitude beta plane. Here, “observability” means the ability to establish, in a finite interval of time, the time-dependent ocean state given density observations over the same interval and with no regard for errors. The dynamics is linearized and hydrostatic, so that the motion can be decomposed into normal modes and the observability analysis is simplified. An observability Gramian (a symmetric matrix) is determined for the flows in an inviscid interior, in frictional boundary layers, and in a closed basin. Its properties are used to establish the condition for complete observability and to identify optimal data locations for each of these flows. It is found that complete observability of an oceanic interior in time-dependent Sverdrup balance requires that the observations originate from the westernmost location at each considered latitude. The degree of observability increases westward due to westward propagation of long baroclinic Rossby waves: data collected in the west are more informative than data collected in the east. Likewise, the best locations for observing variability in the western (eastern) boundary layer are near (far from) the boundary. The observability of a closed basin is influenced by the westward propagation and the boundaries. Optimal data locations that are identified for different resolutions (0.01 to 1 yr) and lengths of data records (0.2 to 20 yr) show a variable influence of the planetary vorticity gradient. Data collected near the meridional boundaries appear always less informative, from the viewpoint of basin observability, than data collected away from these boundaries.
    Description: This work was supported by the U.S. National Science Foundation.
    Description: 2015-03-01
    Keywords: Circulation/ Dynamics ; Ocean circulation ; Rossby waves ; Mathematical and statistical techniques ; Inverse methods ; Variability ; Oceanic variability
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-05-26
    Description: Author Posting. © American Meteorological Society, 2016. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Climate 29 (2016): 1545-1571, doi:10.1175/JCLI-D-15-0509.1.
    Description: Three sediment records of sea surface temperature (SST) are analyzed that originate from distant locations in the North Atlantic, have centennial-to-multicentennial resolution, are based on the same reconstruction method and chronological assumptions, and span the past 15 000 yr. Using recursive least squares techniques, an estimate of the time-dependent North Atlantic SST field over the last 15 kyr is sought that is consistent with both the SST records and a surface ocean circulation model, given estimates of their respective error (co)variances. Under the authors’ assumptions about data and model errors, it is found that the 10°C mixed layer isotherm, which approximately traces the modern Subpolar Front, would have moved by ~15° of latitude southward (northward) in the eastern North Atlantic at the onset (termination) of the Younger Dryas cold interval (YD), a result significant at the level of two standard deviations in the isotherm position. In contrast, meridional movements of the isotherm in the Newfoundland basin are estimated to be small and not significant. Thus, the isotherm would have pivoted twice around a region southeast of the Grand Banks, with a southwest–northeast orientation during the warm intervals of the Bølling–Allerød and the Holocene and a more zonal orientation and southerly position during the cold interval of the YD. This study provides an assessment of the significance of similar previous inferences and illustrates the potential of recursive least squares in paleoceanography.
    Description: OM acknowledges support from the U.S. National Science Foundation. CW acknowledges support from the European Research Council ERC Grant ACCLIMATE 339108.
    Description: 2016-08-19
    Keywords: Geographic location/entity ; North Atlantic Ocean ; Circulation/ Dynamics ; Fronts ; Mathematical and statistical techniques ; Inverse methods ; Kalman filters ; Variability ; Climate variability ; Oceanic variability
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...