ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Root  (2)
  • etintidine  (2)
  • Springer  (4)
  • 1
    ISSN: 1573-904X
    Keywords: etintidine ; high-performance liquid chromatography (HPLC) ; solid extraction ; determination of etintidine in plasma
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology
    Notes: Abstract This paper describes a new, rapid solid extraction method for the determination of etintidine in plasma. The method employs a semiautomatic sample preparation system. Plasma samples and the internal standard (cimetidine) were applied onto octyl-bonded silica extraction columns. The extraction columns were then subjected to Tris buffer and water wash and were subsequently loaded onto an automatic sample injection system. The contents of the extraction columns were eluted on-line with a mobile phase of acetonitrile:methanol:0.1% ammonium hydroxide (85:10:5, by volume) onto a silica analytical column and detected by UV absorption at 229 nm. The chromatographic condition separates etintidine from some of its metabolites and other endogenous components in plasma. The detection limit for etintidine was 0.02–0.05 µg/ml when 0.2 ml of plasma was used. This method has been used for the determination of plasma etintidine levels in humans and mice after oral administration of etintidine and was found to be suitable for pharmacokinetic/bioavailability studies of etintidine in humans and animals. The method can also be used for the quantitative determination of cimetidine and certain metabolites of etintidine.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Planta 192 (1993), S. 98-103 
    ISSN: 1432-2048
    Keywords: Aluminum toxicity ; Calcium uptake ; Growth inhibition ; Root ; Triticum
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The cation Al3+ is toxic to plants at micromolar concentrations and can severely inhibit root growth in solution experiments. Trivalent aluminum hydrolyzes in solution, and, apart from the Al3+ ion, which dominates speciation below pH 5.0, various mononuclear and polynuclear hydroxy-Al species can also occur (Kinraide 1991). Accumulating evidence suggests that Al3+ is the rhizotoxic species under the experimental conditions used in the present study (Kinraide 1991; Kinraide et al. 1992). The inhibition of Ca2+ uptake in roots by Al3+ has been proposed as a possible mechanism for Al3+ toxicity, and in this study the hypothesis was tested directly. Root growth and Ca2+ uptake were measured in 5-d-old seedlings of wheat (Triticum aestivum L. Thell) during exposure to Al3+ in a low-Ca2+ basal medium, and to Al3+ in the presence of added cations. Uptake of Ca2+ in whole roots and translocation to the shoot were measured using 45Ca2+, and localized measurements of net Ca2+ flux were also made at the root apex using the technique of microelectrode ion-flux estimation. Treatment with 2.64 μM AlCl3 in 226 μM CaCl2, at pH 4.5, severely inhibited root growth without affecting Ca2+ uptake. Addition of 30 mM Na2+, 3 mM Mg2+ or 50 μM tris(ethylenediamine)cobalt(III) to this Al3+ treatment restored root growth but significantly reduced Ca2+ uptake measured over the entire root system and at the root apex. The Al3+ and Ca2+ concentrations were adjusted so that the activities of the Al3+ and Ca2+ ions were constant in all solutions (1.5 μM and 200 μM, respectively). Root growth can be severely inhibited by Al3+ concentrations that do not affect Ca2+ uptake, while the addition of ameliorating cations depresses Ca2+ uptake. These results argue against the hypothesis that Al3+ inhibits root growth by reducing Ca2+ uptake.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Planta 192 (1993), S. 104-109 
    ISSN: 1432-2048
    Keywords: Aluminum toxicity ; Calcium displacement ; Electrical potential ; Root ; Triticum
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Several mineral rhizotoxicities, including those induced by Al3+, H+, and Na+, can be relieved by elevated Ca2+ in the rooting medium. This leads to the hypothesis that the toxic cations displace Ca2+ from transport channels or surface ligands that must be occupied by Ca2+ in order for root elongation to occur. In this study with wheat (Triticum aestivum L.) seedlings, we have determined, in the case of Al3+, that (i) Ca2+, Mg2+, and Sr2+ are equally ameliorative, (ii) that root elongation does not increase as Ca2+ replaces Mg2+ or Sr2+ in the rooting media, and (iii) that rhizotoxicity is a function solely of Al3+ activity at the root-cell membrane surface as computed by a Gouy-Chapman-Stern model. The rhizotoxicity was indifferent to the computed membrane-surface Ca2+ activity. The rhizotoxicity induced by high levels of tris(ethylenediamine)cobaltic ion (TEC3+), in contrast to Al3+, was specifically relieved by Ca2+ at the membrane surface. The rhizotoxicity induced by H+ exhibited a weak specific response to Ca2+ at the membrane surface. We conclude that the Ca2+-displacement hypothesis fails in the case of Al3+ rhizotoxicity and that amelioration by cations (including monovalent cations) occurs because of decreased membrane-surface negativity and the consequent decrease in the membrane-surface activity of Al3+. However, TEC3+, but not Al3+, may be toxic because it inhibits Ca2+ uptake. The nature of the specific H+-Ca2+ interaction is uncertain.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Springer
    Journal of pharmacokinetics and pharmacodynamics 15 (1987), S. 557-568 
    ISSN: 1573-8744
    Keywords: etintidine ; propranolol ; 4-hydroxypropranolol ; interaction ; pharmacokinetics
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology
    Notes: Abstract Etintidine HCl is a potent H2 -blocker. The effect of clinical doses of etintidine on the disposition of a single oral dose of propranolol was investigated in 12 normal subjects. This was a double-blind, two-way crossover study. Each subject received etintidine (400 mg) or placebo twice a day with meals for 4 days on two occasions (separated by 4 days). On each occasion, the subjects were fasted overnight on Day 3 and were given an oral dose of Inderal® (40 mg propranolol hydrochloride) 30 min following the administration of the morning dose of etintidine or placebo on Day 4. Blood samples were collected prior to and up to 24 hr following the administration of propranolol. The plasma samples were analyzed for propranolol and 4-hydroxypropranolol by HPLC. Comparison of the pharmacokinetic parameters of propranolol between etintidine and the placebo groups indicates that etintidine significantly increased the AUC0−∞,values (573.5 vs. 146.4 ng·hr/ml, p=0.0001)and prolonged the elimination half-life (4.61 vs. 2.33 hr) of propranolol. Statistical evaluation of the pharmacokinetic parameters of 4-hydroxypropanolol indicates that etintidine also increased the AUC0−24 values (43.8 vs. 16.4 ng·hr/ml, p=0.0028) and prolonged the elimination half-life (4.87 vs. 1.97 hr) of 4-hydroxypropranolol. The data suggest that etintidine, like cimetidine, impaired the elimination of propranolol. Etintidine also protracted the elimination of 4-hydroxypropranolol, an active metabolite of propranolol.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...