ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Rivers  (3)
  • Air-sea gas exchange  (1)
  • 1
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2008. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geophysical Research Letters 35 (2008): L03402, doi:10.1029/2007GL032837.
    Description: Arctic rivers transport huge quantities of dissolved organic carbon (DOC) to the Arctic Ocean. The prevailing paradigm is that DOC in arctic rivers is refractory and therefore of little significance for the biogeochemistry of the Arctic Ocean. We show that there is substantial seasonal variability in the lability of DOC transported by Alaskan rivers to the Arctic Ocean: little DOC is lost during incubations of samples collected during summer, but substantial losses (20–40%) occur during incubations of samples collected during the spring freshet when the majority of the annual DOC flux occurs. We speculate that restricting sampling to summer may have biased past studies. If so, then fluvial inputs of DOC to the Arctic Ocean may have a much larger influence on coastal ocean biogeochemistry than previously realized, and reconsideration of the role of terrigenous DOC on carbon, microbial, and food-web dynamics on the arctic shelf will be warranted.
    Description: This material is based on work supported by the National Science Foundation under grant numbers OPP-0436106, OPP- 0519840, and EAR-0403962, and is a contribution to the Study of Environmental Arctic Change (SEARCH).
    Keywords: DOC ; Arctic ; Rivers
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: text/plain
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2007. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research 112 (2007): G04S60, doi:10.1029/2006JG000371.
    Description: Export of nitrate and dissolved organic carbon (DOC) from the upper Kuparuk River between the late 1970s and early 2000s was evaluated using long-term ecological research (LTER) data in combination with solute flux and catchment hydrology models. The USGS Load Estimator (LOADEST) was used to calculate June–August export from 1978 forward. LOADEST was then coupled with a catchment-based land surface model (CLSM) to estimate total annual export from 1991 to 2001. Simulations using the LOADEST/CLSM combination indicate that annual nitrate export from the upper Kuparuk River increased by ~5 fold and annual DOC export decreased by about one half from 1991 to 2001. The decrease in DOC export was focused in May and was primarily attributed to a decrease in river discharge. In contrast, increased nitrate export was evident from May to September and was primarily attributed to increased nitrate concentrations. Increased nitrate concentrations are evident across a wide range of discharge conditions, indicating that higher values do not simply reflect lower discharge in recent years but a significant shift to higher concentration per unit discharge. Nitrate concentrations remained elevated after 2001. However, extraordinarily low discharge during June 2004 and June–August 2005 outweighed the influence of higher concentrations in determining export during these years. The mechanism responsible for the recent increase in nitrate concentrations is uncertain but may relate to changes in soils and vegetation associated with regional warming. While changes in nitrate and DOC export from arctic rivers reflect changes in terrestrial ecosystems, they also have significant implications for Arctic Ocean ecosystems.
    Description: This work was supported by the Arctic System Science Program of the National Science Foundation (OPP- 0436118) and by NSF funding for the Arctic LTER through a series of grants from 1987 to present.
    Keywords: Nitrate ; DOC ; Arctic ; Rivers ; Change
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-05-25
    Description: Author Posting. © Ecological Society of America, 2006. This article is posted here by permission of Ecological Society of America for personal use, not for redistribution. The definitive version was published in Ecological Applications 16 (2006): 2064–2090, doi:10.1890/1051-0761(2006)016[2064:DALAWA]2.0.CO;2.
    Description: Denitrification is a critical process regulating the removal of bioavailable nitrogen (N) from natural and human-altered systems. While it has been extensively studied in terrestrial, freshwater, and marine systems, there has been limited communication among denitrification scientists working in these individual systems. Here, we compare rates of denitrification and controlling factors across a range of ecosystem types. We suggest that terrestrial, freshwater, and marine systems in which denitrification occurs can be organized along a continuum ranging from (1) those in which nitrification and denitrification are tightly coupled in space and time to (2) those in which nitrate production and denitrification are relatively decoupled. In aquatic ecosystems, N inputs influence denitrification rates whereas hydrology and geomorphology influence the proportion of N inputs that are denitrified. Relationships between denitrification and water residence time and N load are remarkably similar across lakes, river reaches, estuaries, and continental shelves. Spatially distributed global models of denitrification suggest that continental shelf sediments account for the largest portion (44%) of total global denitrification, followed by terrestrial soils (22%) and oceanic oxygen minimum zones (OMZs; 14%). Freshwater systems (groundwater, lakes, rivers) account for about 20% and estuaries 1% of total global denitrification. Denitrification of land-based N sources is distributed somewhat differently. Within watersheds, the amount of land-based N denitrified is generally highest in terrestrial soils, with progressively smaller amounts denitrified in groundwater, rivers, lakes and reservoirs, and estuaries. A number of regional exceptions to this general trend of decreasing denitrification in a downstream direction exist, including significant denitrification in continental shelves of N from terrestrial sources. Though terrestrial soils and groundwater are responsible for much denitrification at the watershed scale, per-area denitrification rates in soils and groundwater (kg N·km−2·yr−1) are, on average, approximately one-tenth the per-area rates of denitrification in lakes, rivers, estuaries, continental shelves, or OMZs. A number of potential approaches to increase denitrification on the landscape, and thus decrease N export to sensitive coastal systems exist. However, these have not generally been widely tested for their effectiveness at scales required to significantly reduce N export at the whole watershed scale.
    Description: This work was supported in part by grants from the U.S. National Science Foundation (EAR0355366, DEB0332237, DEB0443439) and National Aeronautics and Space Administration (NNG04GL68G).
    Keywords: Continental shelf ; Denitrification ; Estuaries ; Lakes ; Nitrogen ; Oxygen minimum zones ; Rivers ; Sediments ; Soils
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2011. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research 116 (2011): C12020, doi:10.1029/2011JC006998.
    Description: A three dimensional model of Arctic Ocean circulation and mixing, with a horizontal resolution of 18 km, is overlain by a biogeochemical model resolving the physical, chemical and biological transport and transformations of phosphorus, alkalinity, oxygen and carbon, including the air-sea exchange of dissolved gases and the riverine delivery of dissolved organic carbon. The model qualitatively captures the observed regional and seasonal trends in surface ocean PO4, dissolved inorganic carbon, total alkalinity, and pCO2. Integrated annually, over the basin, the model suggests a net annual uptake of 59 Tg C a−1, within the range of published estimates based on the extrapolation of local observations (20–199 Tg C a−1). This flux is attributable to the cooling (increasing solubility) of waters moving into the basin, mainly from the subpolar North Atlantic. The air-sea flux is regulated seasonally and regionally by sea-ice cover, which modulates both air-sea gas transfer and the photosynthetic production of organic matter, and by the delivery of riverine dissolved organic carbon (RDOC), which drive the regional contrasts in pCO2 between Eurasian and North American coastal waters. Integrated over the basin, the delivery and remineralization of RDOC reduces the net oceanic CO2 uptake by ~10%.
    Description: This study has been carried out as part of ECCO2 and SASS (Synthesis of the Arctic System Science) projects funded by NASA and NSF, respectively. MM and MJF are grateful for support from the National Science Foundation (ARC-0531119 and ARC-0806229) for financial support. MM also acknowledges NASA for providing computer time, the use of the computing facilities at NAS center and also the Scripps post-doctoral program for further financial support that helped to complete the manuscript. RMK also acknowledges NOAA for support (NA08OAR4310820 and NA08OAR4320752).
    Description: 2012-06-15
    Keywords: Air-sea gas exchange ; Biogeochemical cycles ; Land-ocean coupling ; Numerical modeling ; Ocean carbon cycle ; Polar oceans
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...