ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • River  (4)
Collection
Keywords
Years
  • 1
    Publication Date: 2022-05-25
    Description: Author Posting. © The Author(s), 2009. This is the author's version of the work. It is posted here by permission of Elsevier B.V. for personal use, not for redistribution. The definitive version was published in Chemical Geology 268 (2009): 337-343, doi:10.1016/j.chemgeo.2009.09.013.
    Description: Analyses of Chilean river waters indicate that the average yield of unradiogenic Sr (~ 517 mol Sr km− 2 yr− 1, 87Sr/86Sr ~ 0.7057) from western South America (1,220,853 km2) into the southeastern Pacific Ocean is ~ 2–4 times higher than that from Iceland (~ 110 mol Sr km − 2 yr− 1, 87Sr/86Sr ~ 0.7025) and the Deccan traps, but lower than fluxes of unradiogenic Sr from ocean islands in the Lesser Antilles and Réunion. The Sr flux from western South America accounts for about 1.8% of the annual dissolved Sr delivered to the ocean via rivers. If Chilean rivers analyzed in this study accurately characterize runoff from western South America, active convergent continental margins release about as much unradiogenic Sr to seawater as a 0–1 Myr old mid-ocean ridge segment of equivalent length. Modulations of the flux of unradiogenic Sr from active margins over geologic time scales have to be considered as an additional driving force of change in the marine Sr isotope record, supplementing temporal variations in the submarine hydrothermal flux as a source of unradiogenic Sr to seawater. Such modulations can be driven by changes in the surface exposure of volcanic arc terrains, changes in climate, ocean currents and geographic latitude due to plate tectonics, as well as topographic changes that can affect local rainfall, runoff and erosion.
    Description: We acknowledge financial 302 support from NSF grant EAR-0519387, from WHOI’s Mary Sears Visitor Program, and thank the German DAAD for travel support for KF.
    Keywords: Strontium ; River ; Seawater ; Chile ; Andes ; Weathering
    Repository Name: Woods Hole Open Access Server
    Type: Preprint
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2009. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geochemistry Geophysics Geosystems 10 (2009): Q06014, doi:10.1029/2008GC002356.
    Description: The Land2Sea database contains data on the sizes of 1519 exorheic river drainage basins (79% of the exorheic land area), annual suspended sediment fluxes (593 rivers, 63% of the exorheic land area), and water discharges (1272 rivers, 76% of the exorheic land area) that have been compiled from a variety of sources. The database extends earlier compilations, such as GEMS/GLORI. The river basins are grouped into 19 large-scale drainage regions to investigate the regional variability in freshwater and sediment fluxes to various ocean basins. The annual suspended sediment flux to the coastal ocean (~18.5 × 109 tons) is dominated by east Asia (6.1 × 109 tons); Arabia, India, and southeast Asia (4.3 × 109 tons); and eastern South America (2.4 × 109 tons). Small topical islands of Oceania support the highest annual sediment fluxes per drainage area (~9650 t km−2 a−1). Annual freshwater discharge to the coastal ocean (~38,857 km3) is dominated by runoff from eastern South America (11,199 km3); east Asia (7114 km3); and Arabia, India, and southeast Asia (4384 km3). The empirical data agree well with results from global models (ART and BQART) that have been trained on a subset of the data compiled here.
    Description: The Woods Hole Oceanographic Institution, the U.S. National Science Foundation (grants EAR-0519387 and OCE-0851015), and the French CNRS (Observatoire Midi- Pyre´ne´es in Toulouse, France) funded this work.
    Keywords: River ; Database ; Water discharge ; Runoff ; Suspended sediment ; Drainage basin area
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: text/plain
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2010. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geochemistry Geophysics Geosystems 11 (2010): Q03016, doi:10.1029/2009GC002869.
    Description: Realistic models of past climate and ocean chemistry depend on reconstructions of the Earth's surface environments in the geologic past. Among the critical parameters is the geologic makeup of continental drainage. Here we show, for the present, that the isotope composition of dissolved strontium in rivers increases linearly with the age of bedrock in drainage basins, with the notable exception of the drainage area of Arabia, India, and Southeast Asia that is affected by unusually radiogenic dissolved Sr from the Himalaya. We also demonstrate that the neodymium isotope compositions of suspended matter in rivers as well as clastic sediments deposited along the ocean margins decrease linearly with the bedrock ages of river drainage basins and large-scale continental drainage regions, as determined from digital geologic maps. These correlations are used to calculate the present-day input of dissolved Sr (4.7 × 1010 mol yr−1, 87Sr/86Sr of ∼0.7111) and particulate Nd isotopes (ɛNd of approximately −7.3 ± 2.2) to the oceans. The fact that the regionally averaged ɛNd of the global detrital input to the global coastal ocean is identical to globally averaged seawater (ɛNd of −7.2 ± 0.5) lends credence to the importance of “boundary exchange” for the Nd isotope composition of water masses. Regional biases in source areas of detrital matter and runoff are reflected by the observation that the average age of global bedrock, weighted according to the riverine suspended sediment flux, is significantly younger (∼336 Myr) than the age of global bedrock weighted according to water discharge (394 Myr), which is younger than the average bedrock age of the nonglaciated, exorheic portions of the continents (453 Myr). The observation that the bedrock age weighted according to Sr flux is younger (339 Myr) than that weighted according to water flux reflects the disproportionate contribution from young sedimentary and volcanic rocks to the dissolved Sr load. Neither the isotope composition of the dissolved nor the particulate continental inputs to the ocean provide unbiased perspectives of the lithologic makeup of the Earth's surface. Temporal changes in bedrock geology as well as the shifting focal points of physical erosion and water discharge will undoubtedly have exerted strong controls on temporal and spatial changes in the isotope chemistry of past global runoff and thus seawater.
    Description: NSF grants EAR‐ 0125873, EAR‐0519387, and OCE‐0851015 to B.P.‐E. and a CNRS‐funded “poste rouge” position for B.P.‐E. at the Observatoire Midi‐Pyrénées in Toulouse supported this work.
    Keywords: Seawater ; River ; Strontium ; Neodymium ; Isotope ; Continental runoff
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Format: text/plain
    Format: application/vnd.ms-excel
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2022-11-04
    Description: © The Author(s), 2022. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Voss, B., Eglinton, T., Peucker-Ehrenbrink, B., Galy, V., Lang, S., McIntyre, C., Spencer, R., Bulygina, E., Wang, Z., & Guay, K. Isotopic evidence for sources of dissolved carbon and the role of organic matter respiration in the Fraser River basin, Canada. Biogeochemistry. (2022), https://doi.org/10.1007/s10533-022-00945-5.
    Description: Sources of dissolved and particulate carbon to the Fraser River system vary significantly in space and time. Tributaries in the northern interior of the basin consistently deliver higher concentrations of dissolved organic carbon (DOC) to the main stem than other tributaries. Based on samples collected near the Fraser River mouth throughout 2013, the radiocarbon age of DOC exported from the Fraser River does not change significantly across seasons despite a spike in DOC concentration during the freshet, suggesting modulation of heterogeneous upstream chemical and isotopic signals during transit through the river basin. Dissolved inorganic carbon (DIC) concentrations are highest in the Rocky Mountain headwater region where carbonate weathering is evident, but also in tributaries with high DOC concentrations, suggesting that DOC respiration may be responsible for a significant portion of DIC in this basin. Using an isotope and major ion mass balance approach to constrain the contributions of carbonate and silicate weathering and DOC respiration, we estimate that up to 33 ± 11% of DIC is derived from DOC respiration in some parts of the Fraser River basin. Overall, these results indicate close coupling between the cycling of DOC and DIC, and that carbon is actively processed and transformed during transport through the river network.
    Description: Open Access funding provided by the MIT Libraries. This work was supported by the WHOI Academic Programs Office, the MIT EAPS Department Student Assistance Fund, and the PAOC Houghton Fund to BMV; NSF-ETBC grants OCE-0851015 to BPE, VG, and TIE and OCE-0851101 to RGMS; NSF grant EAR-1226818 to BPE; NSF grant OCE-0928582 to TIE and VG; and a WHOI Arctic Research Initiative grant to ZAW.
    Keywords: River ; Carbon isotopes ; Radiocarbon ; Weathering ; Carbon cycle
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...