ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Euphytica 92 (1995), S. 295-300 
    ISSN: 1573-5060
    Keywords: barley ; scald ; Rhynchosporium secalis ; resistance ; Hordeum vulgare
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Summary Twenty Finnish isolates of Rhynchosporium secalis (Oud.) J.J. Davis, the causal agent of scald, were taken from infected barley (Hordeum vulgare L.) plants and inoculated on to seedlings of a differential series of barley containing a range of major genes for resistance to the fungus, as well as on to six Nordic 6-row spring barleys and three winter ryes (Secale cereale L.). These fungal isolates derived from four sites and three host varieties. Disease development was monitored on two leaves of seedlings in the greenhouse employing a standard scale, and on adult plants in the field by assessing the diseased area on the three uppermost leaves. A comparison was also made between the pathogenicity and virulence of ten Finnish and ten Canadian R. secalis isolates. The Finnish isolates varied in virulence, but with the exception of Algerian (CI 1179) seedlings and adult La Mesita (CI 7565) all seedlings and adult plants of the entire differential series were resistant to all isolates. Canadian isolates were, on average, less virulent than Finnish isolates. All the Nordic checks were susceptible to all Finnish and seven Canadian isolates, but differences in the degree of susceptibility were evident. Isolates of R. secalis from barley were non-pathogenic on rye, isolates from Elymus repens L. were non-pathogenic on barley and rye, and isolates from rye were only pathogenic on rye. Finnish R. secalis isolates contain no redundant pathogenic diversity. The differential series represents a useful, but as yet untapped, source of resistance to R. secalis for Finnish barley breeders.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 0006-3592
    Keywords: methanol sensor ; methanol monitoring and control ; methylotrophic yeast fermentation ; Pichia pastoris ; transferrin ; shake-flask cultures ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: The methylotrophic yeast Pichia pastoris can be used to express recombinant genes at high levels under the control of the methanol-inducible alcohol oxidase 1 (AOX1) promoter. Accurate regulation of the methanol concentration in P. pastoris cultures is necessary to maintain induction, while preventing accumulation of methanol to cytotoxic levels. We developed an inexpensive methanol sensor that uses a gas-permeable silicone rubber tube immersed in the culture medium and an organic solvent vapor detector. The sensor was used to monitor methanol concentration continuously throughout a fed-batch shake-flask culture of a P. pastoris clone producing the N-lobe of human transferrin. The sensor calibration was stable for the duration of the culture and the output signal accurately reflected the methanol concentration determined off-line by HPLC. A closed-loop control system utilizing this sensor was developed and used to maintain a 0.3% (v/v) methanol concentration in the culture. Use of this system resulted in a fivefold increase in volumetric protein productivity over levels obtained using the conventional fed-batch protocol. © 1997 John Wiley & Sons, Inc. Biotechnol Bioeng 56: 279-286, 1997.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...