ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Rhodobacter capsulatus  (2)
  • 2-n-heptyl-4-hydroxyquinoline-N-oxide  (1)
  • 1
    ISSN: 1432-072X
    Keywords: Rhodobacter capsulatus ; Nitrate reduction ; Auxiliary electron transport ; Myxothiazol ; 2-n-heptyl-4-hydroxyquinoline-N-oxide ; Ubiquinone pool
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The effects of various electron transport inhibitors upon the rates of reduction NO 3 - , dimethyl sulphoxide (DMSO) and N2O in anaerobic suspensions of Rhodobacter capsulatus have been studied. A new method for the determination of the rates of reduction of these auxiliary oxidants in intact cells is presented, based on the proportionality observed between the concentration of oxidant and the duration of the electrochromic carotenoid bandshift. For NO 3 - and N2O good agreement was found between rates of reduction determined using electrodes and those determined by the electrochromic method. Myxothiazol and antimycin A had no effect on the rates of reduction of NO 3 - and DMSO suggesting that the cytochrome b/c 1complex is not involved in electron transport to these oxidants. 2-n-heptyl-4-hydroxyquinoline-N-oxide (HOQNO) inhibited at two sites, one within the cytochrome b/c 1complex and the other on the nitrate reducing pathay, but had no effect on electron transport to N2O or DMSO. In both intact cells and cell free extracts, HOQNO had no effect on the nitrate dependent re-oxidation of reduced methylviologen (MVH2), a direct electron donor to nitrate reductase. Our data are consistent with a branch point for the auxiliary electron transport pathways at the level of the ubiquinone pool.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-072X
    Keywords: Rhodobacter capsulatus ; Nuclear magnetic resonance assay ; Dimethyl sulphoxide ; Dimethyl sulphide ; Trimethylamine-N-oxide ; Trimethylamine ; Electron transport
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Nuclear magnetic resonance is established as a sensitive and specific method for following the reduction of dimethylsulphoxide and trimethylamine-N-oxide by bacteria. Using this method it has been shown that cells of Rhodobacter capsulatus reduce both dimethylsulphoxide and trimethylamine-N-oxide at linear rates at all concentrations of these acceptors that can be conveniently detected during a continuous assay. The rate of reduction of trimethylamine-N-oxide was eightfold higher than the rate of dimethylsulphoxide reduction. An upper limit of approximately 0.1 mM may be placed upon the apparent K m value for each acceptor, but the value for dimethylsulphoxide is deduced to be lower than that for trimethylamine-N-oxide on the basis of the strong inhibitory effect of the former on the reduction of the latter. Reduction of trimethylamine-N-oxide by Rb. capsulatus was inhibited by illumination and by oxygen, but only the former effect was relieved following dissipation of the proton electrochemical gradient across the cytoplasmic membrane. Rotenone inhibited the reduction of trimethylamine-N-oxide whereas myxothiazol did not, consistent with a pathway of electrons to the reductase from NADH dehydrogenase that does not involve the cytochrome bc 1complex.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...