ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2022-05-25
    Description: © The Author(s), 2013. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Frontiers in Microbiology 4 (2013): 262, doi:10.3389/fmicb.2013.00262.
    Description: Manganese (Mn) oxides are among the most reactive sorbents and oxidants within the environment, where they play a central role in the cycling of nutrients, metals, and carbon. Recent discoveries have identified superoxide (O−2) both of biogenic and abiogenic origin as an effective oxidant of Mn(II) leading to the formation of Mn oxides. Here we examined the conditions under which abiotically produced superoxide led to oxidative precipitation of Mn and the solid-phases produced. Oxidized Mn, as both aqueous Mn(III) and Mn(III/IV) oxides, was only observed in the presence of active catalase, indicating that hydrogen peroxide (H2O2), a product of the reaction of O−2 with Mn(II), inhibits the oxidation process presumably through the reduction of Mn(III). Citrate and pyrophosphate increased the yield of oxidized Mn but decreased the amount of Mn oxide produced via formation of Mn(III)-ligand complexes. While complexing ligands played a role in stabilizing Mn(III), they did not eliminate the inhibition of net Mn(III) formation by H2O2. The Mn oxides precipitated were highly disordered colloidal hexagonal birnessite, similar to those produced by biotically generated superoxide. Yet, in contrast to the large particulate Mn oxides formed by biogenic superoxide, abiotic Mn oxides did not ripen to larger, more crystalline phases. This suggests that the deposition of crystalline Mn oxides within the environment requires a biological, or at least organic, influence. This work provides the first direct evidence that, under conditions relevant to natural waters, oxidation of Mn(II) by superoxide can occur and lead to formation of Mn oxides. For organisms that oxidize Mn(II) by producing superoxide, these findings may also point to other microbially mediated processes, in particular enzymatic hydrogen peroxide degradation and/or production of organic ligand metabolites, that allow for Mn oxide formation.
    Description: This project was supported by the National Science Foundation, grants EAR-1245919/1025077 (awarded to Colleen M. Hansel and Bettina M. Voelker), and by the Radcliffe Institute for Advanced Study at Harvard University (through a fellowship to Bettina M. Voelker).
    Keywords: Manganese oxidation ; Manganese oxides ; Superoxide ; Reactive oxygen species ; Mn(III) complexes ; Organic ligands
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-05-25
    Description: © The Author(s), 2016. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Frontiers in Chemistry 4 (2016): 5, doi:10.3389/fchem.2016.00005.
    Description: Biological production and decay of the reactive oxygen species (ROS) hydrogen peroxide (H2O2) and superoxide (O−2) likely have significant effects on the cycling of trace metals and carbon in marine systems. In this study, extracellular production rates of H2O2 and O−2 were determined for five species of marine diatoms in the presence and absence of light. Production of both ROS was measured in parallel by suspending cells on filters and measuring the ROS downstream using chemiluminescence probes. In addition, the ability of these organisms to break down O−2 and H2O2 was examined by measuring recovery of O−2 and H2O2 added to the influent medium. O−2 production rates ranged from undetectable to 7.3 × 10−16 mol cell−1 h−1, while H2O2 production rates ranged from undetectable to 3.4 × 10−16 mol cell−1 h−1. Results suggest that extracellular ROS production occurs through a variety of pathways even amongst organisms of the same genus. Thalassiosira spp. produced more O−2 in light than dark, even when the organisms were killed, indicating that O−2 is produced via a passive photochemical process on the cell surface. The ratio of H2O2 to O−2 production rates was consistent with production of H2O2 solely through dismutation of O−2 for T. oceanica, while T. pseudonana made much more H2O2 than O−2. T. weissflogii only produced H2O2 when stressed or killed. P. tricornutum cells did not make cell-associated ROS, but did secrete H2O2-producing substances into the growth medium. In all organisms, recovery rates for killed cultures (94–100% H2O2; 10–80% O−2) were consistently higher than those for live cultures (65–95% H2O2; 10–50% O−2). While recovery rates for killed cultures in H2O2 indicate that nearly all H2O2 was degraded by active cell processes, O−2 decay appeared to occur via a combination of active and passive processes. Overall, this study shows that the rates and pathways for ROS production and decay vary greatly among diatom species, even between those that are closely related, and as a function of light conditions.
    Description: This research was supported by NSF grant OCE-1131734/1246174 to BV and CH.
    Keywords: Reactive oxygen species ; Superoxide ; Hydrogen peroxide ; Diatoms ; Culture
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-10-26
    Description: © The Author(s), 2019. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Diaz, J. M., Plummer, S., Hansel, C. M., Andeer, P. F., Saito, M. A., & McIlvin, M. R. NADPH-dependent extracellular superoxide production is vital to photophysiology in the marine diatom Thalassiosira oceanica. Proceedings of the National Academy of Sciences of the United States of America, 116 (33), (2019): 16448-16453, doi: 10.1073/pnas.1821233116.
    Description: Reactive oxygen species (ROS) like superoxide drive rapid transformations of carbon and metals in aquatic systems and play dynamic roles in biological health, signaling, and defense across a diversity of cell types. In phytoplankton, however, the ecophysiological role(s) of extracellular superoxide production has remained elusive. Here, the mechanism and function of extracellular superoxide production by the marine diatom Thalassiosira oceanica are described. Extracellular superoxide production in T. oceanica exudates was coupled to the oxidation of NADPH. A putative NADPH-oxidizing flavoenzyme with predicted transmembrane domains and high sequence similarity to glutathione reductase (GR) was implicated in this process. GR was also linked to extracellular superoxide production by whole cells via quenching by the flavoenzyme inhibitor diphenylene iodonium (DPI) and oxidized glutathione, the preferred electron acceptor of GR. Extracellular superoxide production followed a typical photosynthesis-irradiance curve and increased by 30% above the saturation irradiance of photosynthesis, while DPI significantly impaired the efficiency of photosystem II under a wide range of light levels. Together, these results suggest that extracellular superoxide production is a byproduct of a transplasma membrane electron transport system that serves to balance the cellular redox state through the recycling of photosynthetic NADPH. This photoprotective function may be widespread, consistent with the presence of putative homologs to T. oceanica GR in other representative marine phytoplankton and ocean metagenomes. Given predicted climate-driven shifts in global surface ocean light regimes and phytoplankton community-level photoacclimation, these results provide implications for future ocean redox balance, ecological functioning, and coupled biogeochemical transformations of carbon and metals.
    Description: This work was supported by a postdoctoral fellowship from the Ford Foundation (to J.M.D.), the National Science Foundation (NSF) under grants OCE 1225801 (to J.M.D.) and OCE 1246174 (to C.M.H.), a Junior Faculty Seed Grant from the University of Georgia Research Foundation (to J.M.D.), and a National Science Foundation Graduate Research Fellowship (to S.P.). The FIRe was purchased through a NSF equipment improvement grant (1624593).The authors thank Melissa Soule for assistance with LC/MS/MS analysis of peptide samples.
    Keywords: Reactive oxygen species ; Photosynthesis ; Oxidative stress ; Biogeochemistry
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2022-10-26
    Description: © The Author(s), 2019. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Plummeer, S., Taylor, A. E., Harvey, E. L., Hansel, C. M., & Diaz, J. M. Dynamic regulation of extracellular superoxide production by the coccolithophore Emiliania huxleyi (CCMP 374). Frontiers in Microbiology, 10, (2019): 1546, doi: 10.3389/fmicb.2019.01546.
    Description: In marine waters, ubiquitous reactive oxygen species (ROS) drive biogeochemical cycling of metals and carbon. Marine phytoplankton produce the ROS superoxide (O2−) extracellularly and can be a dominant source of O2− in natural aquatic systems. However, the cellular regulation, biological functioning, and broader ecological impacts of extracellular O2− production by marine phytoplankton remain mysterious. Here, we explored the regulation and potential roles of extracellular O2− production by a noncalcifying strain of the cosmopolitan coccolithophorid Emiliania huxleyi, a key species of marine phytoplankton that has not been examined for extracellular O2− production previously. Cell-normalized extracellular O2− production was the highest under presumably low-stress conditions during active proliferation and inversely related to cell density during exponential growth phase. Removal of extracellular O2− through addition of the O2− scavenger superoxide dismutase (SOD), however, increased growth rates, growth yields, cell biovolume, and photosynthetic efficiency (Fv/Fm) indicating an overall physiological improvement. Thus, the presence of extracellular O2− does not directly stimulate E. huxleyi proliferation, as previously suggested for other phytoplankton, bacteria, fungi, and protists. Extracellular O2− production decreased in the dark, suggesting a connection with photosynthetic processes. Taken together, the tight regulation of this stress independent production of extracellular O2− by E. huxleyi suggests that it could be involved in fundamental photophysiological processes.
    Description: This research was supported by a Junior Faculty Seed Grant from the University of Georgia Research Foundation (JD), a National Science Foundation (NSF) Graduate Research Fellowship (SP), and NSF grant OCE-1355720 (CH). The FlowCam® and FIRe were purchased through a NSF Equipment Improvement Grant (1624593).
    Keywords: Reactive oxygen species ; Superoxide ; Emiliania huxleyi ; Photophysiology ; Oxidative stress ; Redox homeostasis ; Biogeochemical cycling
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2022-05-26
    Description: © The Author(s), 2016. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Frontiers in Marine Science 3 (2016): 232, doi:10.3389/fmars.2016.00232.
    Description: The reactive oxygen species (ROS) superoxide has been implicated in both beneficial and detrimental processes in coral biology, ranging from pathogenic disease resistance to coral bleaching. Despite the critical role of ROS in coral health, there is a distinct lack of ROS measurements and thus an incomplete understanding of underpinning ROS sources and production mechanisms within coral systems. Here, we quantified in situ extracellular superoxide concentrations at the surfaces of aquaria-hosted Porites astreoides during a diel cycle. High concentrations of superoxide (~10's of nM) were present at coral surfaces, and these levels did not change significantly as a function of time of day. These results indicate that the coral holobiont produces extracellular superoxide in the dark, independent of photosynthesis. As a short-lived anion at physiological pH, superoxide has a limited ability to cross intact biological membranes. Further, removing surface mucus layers from the P. astreoides colonies did not impact external superoxide concentrations. We therefore attribute external superoxide derived from the coral holobiont under these conditions to the activity of the coral host epithelium, rather than mucus-derived epibionts or internal sources such as endosymbionts (e.g., Symbiodinium). However, endosymbionts likely contribute to internal ROS levels via extracellular superoxide production. Indeed, common coral symbionts, including multiple strains of Symbiodinium (clades A to D) and the bacterium Endozoicomonas montiporae LMG 24815, produced extracellular superoxide in the dark and at low light levels. Further, representative P. astreoides symbionts, Symbiodinium CCMP2456 (clade A) and E. montiporae, produced similar concentrations of superoxide alone and in combination with each other, in the dark and low light, and regardless of time of day. Overall, these results indicate that healthy, non-stressed P. astreoides and representative symbionts produce superoxide externally, which is decoupled from photosynthetic activity and circadian control. Corals may therefore produce extracellular superoxide constitutively, highlighting an unclear yet potentially beneficial role for superoxide in coral physiology and health.
    Description: This work was supported by a Postdoctoral Fellowship from the Ford Foundation (JD), the National Science Foundation under grants OCE 1225801 (JD) and OCE 1233612 (AA), the Ocean and Climate Change Institute of the Woods Hole Oceanographic Institution (CH), a BIOS Grant in aid award (SM), the Sidney Stern Memorial Trust (CH and AA), as well as an anonymous donor.
    Keywords: Coral ; Superoxide ; Reactive oxygen species ; Photosynthesis ; Symbiodinium ; Stress
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2022-10-26
    Description: © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Bond, R. J., Hansel, C. M., & Voelker, B. M. Heterotrophic bacteria exhibit a wide range of rates of extracellular production and decay of hydrogen peroxide. Frontiers in Marine Science, 7, (2020): 72, doi:10.3389/fmars.2020.00072.
    Description: Bacteria have been implicated as both a source and sink of hydrogen peroxide (H2O2), a reactive oxygen species which can both impact microbial growth and participate in the geochemical cycling of trace metals and carbon in natural waters. In this study, simultaneous H2O2 production and decay by twelve species of heterotrophic bacteria were evaluated in both batch and flow-through incubations. While wide species-to-species variability of cell-normalized H2O2 decay rate coefficients [2 × 10–8 to 5 × 10–6 hr–1 (cell mL–1)–1] was observed, these rate coefficients were relatively consistent for a given bacterial species. By contrast, observed production rates (below detection limit to 3 × 102 amol cell–1 hr–1) were more variable even for the same species. Variations based on incubation conditions in some bacterial strains suggest that external conditions may impact extracellular H2O2 levels either through increased extracellular production or leakage of intracellular H2O2. Comparison of H2O2 production rates to previously determined superoxide (O2–) production rates suggests that O2– and H2O2 production are not necessarily linked. Rates measured in this study indicate that bacteria could account for a majority of H2O2 decay observed in aqueous systems but likely only make a modest contribution to dark H2O2 production.
    Description: This research was supported by NSF grant OCE-1131734/1246174 to BV and CH.
    Keywords: Reactive oxygen species ; Hydrogen peroxide ; Heterotrophic bacteria ; H2O2 production ; H2O2 decomposition
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2022-10-26
    Description: © The Author(s), 2021. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Lamborg, C. H., Hansel, C. M., Bowman, K. L., Voelker, B. M., Marsico, R. M., Oldham, V. E., Swarr, G. J., Zhang, T., & Ganguli, P. M. Dark reduction drives evasion of mercury from the ocean. Frontiers in Environmental Chemistry, 2, (2021): 659085, https://doi.org/10.3389/fenvc.2021.659085.
    Description: Much of the surface water of the ocean is supersaturated in elemental mercury (Hg0) with respect to the atmosphere, leading to sea-to-air transfer or evasion. This flux is large, and nearly balances inputs from the atmosphere, rivers and hydrothermal vents. While the photochemical production of Hg0 from ionic and methylated mercury is reasonably well-studied and can produce Hg0 at fairly high rates, there is also abundant Hg0 in aphotic waters, indicating that other important formation pathways exist. Here, we present results of gross reduction rate measurements, depth profiles and diel cycling studies to argue that dark reduction of Hg2+ is also capable of sustaining Hg0 concentrations in the open ocean mixed layer. In locations where vertical mixing is deep enough relative to the vertical penetration of UV-B and photosynthetically active radiation (the principal forms of light involved in abiotic and biotic Hg photoreduction), dark reduction will contribute the majority of Hg0 produced in the surface ocean mixed layer. Our measurements and modeling suggest that these conditions are met nearly everywhere except at high latitudes during local summer. Furthermore, the residence time of Hg0 in the mixed layer with respect to evasion is longer than that of redox, a situation that allows dark reduction-oxidation to effectively set the steady-state ratio of Hg0 to Hg2+ in surface waters. The nature of these dark redox reactions in the ocean was not resolved by this study, but our experiments suggest a likely mechanism or mechanisms involving enzymes and/or important redox agents such as reactive oxygen species and manganese (III).
    Description: This work was supported by NSF Grant OCE-1355720 (to CH, CL, and BV).
    Keywords: Mercury ; Evasion ; Elemental ; Dark ; Ocean ; Reactive oxygen species ; Manganese ; Global model
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2022-10-26
    Description: © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Sutherland, K. M., Wankel, S. D., & Hansel, C. M. Dark biological superoxide production as a significant flux and sink of marine dissolved oxygen. Proceedings of the National Academy of Sciences of the United States of America, 117(7), (2020): 3433-3439, doi:10.1073/pnas.1912313117.
    Description: The balance between sources and sinks of molecular oxygen in the oceans has greatly impacted the composition of Earth’s atmosphere since the evolution of oxygenic photosynthesis, thereby exerting key influence on Earth’s climate and the redox state of (sub)surface Earth. The canonical source and sink terms of the marine oxygen budget include photosynthesis, respiration, photorespiration, the Mehler reaction, and other smaller terms. However, recent advances in understanding cryptic oxygen cycling, namely the ubiquitous one-electron reduction of O2 to superoxide by microorganisms outside the cell, remains unexplored as a potential player in global oxygen dynamics. Here we show that dark extracellular superoxide production by marine microbes represents a previously unconsidered global oxygen flux and sink comparable in magnitude to other key terms. We estimate that extracellular superoxide production represents a gross oxygen sink comprising about a third of marine gross oxygen production, and a net oxygen sink amounting to 15 to 50% of that. We further demonstrate that this total marine dark extracellular superoxide flux is consistent with concentrations of superoxide in marine environments. These findings underscore prolific marine sources of reactive oxygen species and a complex and dynamic oxygen cycle in which oxygen consumption and corresponding carbon oxidation are not necessarily confined to cell membranes or exclusively related to respiration. This revised model of the marine oxygen cycle will ultimately allow for greater reconciliation among estimates of primary production and respiration and a greater mechanistic understanding of redox cycling in the ocean.
    Description: This work was supported by NASA Earth and Space Science Fellowship NNX15AR62H to K.M.S., NASA Exobiology grant NNX15AM04G to S.D.W. and C.M.H., and NSF Division of Ocean Sciences grant 1355720 to C.M.H. This research was further supported in part by Hanse-Wissenschaftskolleg Institute of Advanced Study fellowships to C.M.H. and S.D.W. We thank Danielle Hicks for assistance with figures and Community Earth Systems Model (CESM) Large Ensemble Project for the availability and use of its data product. The CESM project is primarily supported by the NSF.
    Keywords: Microbial superoxide ; Reactive oxygen species ; Marine dissolved oxygen
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2023-03-08
    Description: © The Author(s), 2022. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Grabb, K., Pardis, W., Kapit, J., Wankel, S., Hayden, E., & Hansel, C. Design optimization of a submersible chemiluminescent sensor (DISCO) for improved quantification of reactive oxygen species (ROS) in surface waters. Sensors, 22(17), (2022): 6683, https://doi.org/10.3390/s22176683.
    Description: Reactive oxygen species (ROS) are key drivers of biogeochemical cycling while also exhibiting both positive and negative effects on marine ecosystem health. However, quantification of the ROS superoxide (O2−) within environmental systems is hindered by its short half-life. Recently, the development of the diver-operated submersible chemiluminescent sensor (DISCO), a submersible, handheld instrument, enabled in situ superoxide measurements in real time within shallow coral reef ecosystems. Here, we present a redesigned and improved instrument, DISCO II. Similar to the previous DISCO, DISCO II is a self-contained, submersible sensor, deployable to 30 m depth and capable of measuring reactive intermediate species in real time. DISCO II is smaller, lighter, lower cost, and more robust than its predecessor. Laboratory validation of DISCO II demonstrated an average limit of detection in natural seawater of 133.1 pM and a percent variance of 0.7%, with stable photo multiplier tube (PMT) counts, internal temperature, and flow rates. DISCO II can also be optimized for diverse environmental conditions by adjustment of the PMT supply voltage and integration time. Field tests showed no drift in the data with a percent variance of 3.0%. Wand tip adaptations allow for in situ calibrations and decay rates of superoxide using a chemical source of superoxide (SOTS-1). Overall, DISCO II is a versatile, user-friendly sensor that enables measurements in diverse environments, thereby improving our understanding of the cycling of reactive intermediates, such as ROS, across various marine ecosystems.
    Description: The development and verification of DISCO was funded by Schmidt Marine Technology Partners (G-2010-59878 to C.M.H., S.D.W. and J.K.). This research was further supported, in part, by grants from NSF GRFP (2016230168 to K.C.G.), WHOI Ocean Ventures Fund (2020 and 2021 to K.C.G.), and the MIT Wellington and Irene Loh Fund Fellowship (4000111995 to K.C.G.).
    Keywords: Reactive oxygen species ; Superoxide ; Chemiluminescent ; In situ analysis ; Ocean sensor ; Corals
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...