ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Rats  (8)
  • American Association for the Advancement of Science (AAAS)  (8)
  • Oxford University Press
Collection
Publisher
  • 1
    Publication Date: 2002-03-09
    Description: Time courses of translocation of fluorescently conjugated proteins to the plasma membrane were simultaneously measured in thousands of individual rat basophilic leukemia cells. We found that the C2 domain---a calcium-sensing, lipid-binding protein module that is an essential regulator of protein kinase C and numerous other proteins---targeted proteins to the plasma membrane transiently if calcium was released from internal stores, and persistently in response to entry of extracellular calcium across the plasma membrane. The C2 domain translocation time courses of stimulated cells clustered into only two primary modes. Hence, the reversible recruitment of families of signaling proteins from one cellular compartment to another is a rapid bifurcation mechanism for inducing discrete states of cellular signaling networks.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Teruel, Mary N -- Meyer, Tobias -- CA83229/CA/NCI NIH HHS/ -- GM062144/GM/NIGMS NIH HHS/ -- HG00057/HG/NHGRI NIH HHS/ -- New York, N.Y. -- Science. 2002 Mar 8;295(5561):1910-2.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Pharmacology, Stanford University Medical School, 269 Campus Drive, Stanford, CA 94305, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11884760" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Bacterial Proteins ; Calcium/*metabolism ; *Calcium Signaling ; Cell Membrane/*metabolism ; Cytosol/metabolism ; Fluorescence ; Fluorescent Dyes ; Isoenzymes/chemistry/*metabolism ; Kinetics ; Luminescent Proteins ; Platelet Activating Factor/pharmacology ; Protein Binding ; Protein Kinase C/chemistry/*metabolism ; Protein Structure, Tertiary ; *Protein Transport ; Rats ; Receptors, Cell Surface/*metabolism ; Recombinant Fusion Proteins/metabolism ; Software ; Thapsigargin/pharmacology ; Transfection ; Tumor Cells, Cultured
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 1999-04-02
    Description: Calcium-calmodulin-dependent protein kinase II (CaMKII) is thought to increase synaptic strength by phosphorylating postsynaptic density (PSD) ion channels and signaling proteins. It is shown that N-methyl-D-aspartate (NMDA) receptor stimulation reversibly translocates green fluorescent protein-tagged CaMKII from an F-actin-bound to a PSD-bound state. The translocation time was controlled by the ratio of expressed beta-CaMKII to alpha-CaMKII isoforms. Although F-actin dissociation into the cytosol required autophosphorylation of or calcium-calmodulin binding to beta-CaMKII, PSD translocation required binding of calcium-calmodulin to either the alpha- or beta-CaMKII subunits. Autophosphorylation of CaMKII indirectly prolongs its PSD localization by increasing the calmodulin-binding affinity.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Shen, K -- Meyer, T -- GM-48113/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1999 Apr 2;284(5411):162-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Cell Biology and Department of Pharmacology and Cancer Biology, Box 3709, Duke University Medical Center, Durham, NC 27710, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10102820" target="_blank"〉PubMed〈/a〉
    Keywords: Actins/metabolism ; Animals ; Calcium/pharmacology ; Calcium-Calmodulin-Dependent Protein Kinase Type 2 ; Calcium-Calmodulin-Dependent Protein Kinases/*metabolism ; Cells, Cultured ; Cytosol/metabolism ; Dendrites/*enzymology ; Electric Stimulation ; Glutamic Acid/pharmacology ; Green Fluorescent Proteins ; Hippocampus/cytology/*enzymology ; Isoenzymes/metabolism ; Luminescent Proteins ; Microscopy, Fluorescence ; Nerve Tissue Proteins/analysis ; Neurons/*enzymology ; Phosphorylation ; Rats ; Receptors, N-Methyl-D-Aspartate/*metabolism ; Synapses/*enzymology ; Tumor Cells, Cultured
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1997-06-13
    Description: The extent to which inositol 1,4,5-trisphosphate (InsP3)-induced calcium signals are localized is a critical parameter for understanding the mechanism of effector activation. The spatial characteristics of InsP3-mediated calcium signals were determined by targeting a dextran-based calcium indicator to intracellular membranes through the in situ addition of a geranylgeranyl lipid group. Elementary calcium-release events observed with this indicator typically lasted less than 33 milliseconds, had diameters less than 2 micrometers, and were uncoupled from each other by the calcium buffer EGTA. Cellwide calcium transients are likely to result from synchronized triggering of such local release events, suggesting that calcium-dependent effector proteins could be selectively activated by localization near sites of local calcium release.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Horne, J H -- Meyer, T -- GM-51457/GM/NIGMS NIH HHS/ -- P01-HL-47053/HL/NHLBI NIH HHS/ -- R01-GM-48113/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1997 Jun 13;276(5319):1690-3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9180077" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Calcium/*metabolism ; Calcium Channels/metabolism ; Cytosol/metabolism ; Egtazic Acid/pharmacology ; Electroporation ; Fluorescent Dyes ; Inositol 1,4,5-Trisphosphate/*pharmacology ; Intracellular Membranes/*metabolism ; Kinetics ; Microscopy, Confocal ; Microscopy, Fluorescence ; Organic Chemicals ; Peptides/metabolism ; Rats ; Signal Transduction ; Tumor Cells, Cultured
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1988-04-29
    Description: The kinetics of calcium release by inositol 1,4,5-trisphosphate (IP3) in permeabilized rat basophilic leukemia cells were studied to obtain insight into the molecular mechanism of action of this intracellular messenger of the phosphoinositide cascade. Calcium release from intracellular storage sites was monitored with fura-2, a fluorescent indicator. The dependence of the rate of calcium release on the concentration of added IP3 in the 4 to 40 nM range showed that channel opening requires the binding of at least three molecules of IP3. Channel opening occurred in the absence of added adenosine triphosphate, indicating that IP3 acts directly on the channel or on a protein that gates it. The channels were opened by IP3 in less than 4 seconds. The highly cooperative opening of calcium channels by nanomolar concentrations of IP3 enables cells to detect and amplify very small changes in the concentration of this messenger in response to hormonal, sensory, and growth control stimuli.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Meyer, T -- Holowka, D -- Stryer, L -- AI22449/AI/NIAID NIH HHS/ -- GM24032/GM/NIGMS NIH HHS/ -- GM30387/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1988 Apr 29;240(4852):653-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Cell Biology, Sherman Fairchild Center, Stanford University School of Medicine, CA 94305.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2452482" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Basophils ; Benzofurans ; Calcimycin/pharmacology ; Calcium/*metabolism ; Cell Membrane Permeability ; Cytoplasm/metabolism ; Fluorescent Dyes ; Fura-2 ; Inositol 1,4,5-Trisphosphate ; Inositol Phosphates/metabolism/*pharmacology ; Ion Channels/drug effects/*metabolism ; Kinetics ; Leukemia, Experimental/metabolism ; Rats ; Spectrometry, Fluorescence ; Sugar Phosphates/*pharmacology ; Tumor Cells, Cultured
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 1978-06-09
    Description: Intracaudate injections of kainic acid destroy striatal neurons containing acetylcholine and gamma-aminobutyric acid but leave dopaminergic nerve terminals in this brain region intact. Rats injected with the drug are aphagic and adipsic, and have other behavioral abnormalities strikingly similar to those seen in animals with lesions in the dopaminergic nigrostriatal bundle.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Pettibone, D J -- Kaufman, N -- Scally, M C -- Meyer, E Jr -- Ulus, I -- Lytle, L D -- New York, N.Y. -- Science. 1978 Jun 9;200(4346):1175-7.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/653362" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Behavior, Animal/drug effects ; Caudate Nucleus/*drug effects/physiology ; Choline O-Acetyltransferase/metabolism ; Dopamine/metabolism ; Dose-Response Relationship, Drug ; Drinking Behavior/*drug effects ; Feeding Behavior/*drug effects ; Glutamate Decarboxylase/metabolism ; Kainic Acid/*pharmacology ; Male ; Posture ; Pyrrolidines/*pharmacology ; Rats
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 1982-01-08
    Description: Large Amounts of cholecystokinin-octapeptide (CCK) are present in the rat caudatoputamen. The peptide occurs in axons and nerve endings but not in perikarya. The origin of CCK in the caudatoputamen was investigated with the use of immunocytochemistry and a radioimmunoassay specific for CCK. Although a small amount of CCK (approximately 30 percent) originates in the amygdaloid complex, the bulk of the peptide (approximately 70 percent) occurs in processes of neurons located ventral to the caudatoputamen, that is, the claustrum or the piriform cortex. The claustrum and piriform cortex receive inputs from various cortical areas and the olfactory system, respectively, and may process information and relay it to the caudatoputamen. Thus CCK may by the transmitter in the final common pathway linking various cortical areas and the olfactory system to the caudatoputamen.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Meyer, D K -- Beinfeld, M C -- Oertel, W H -- Brownstein, M J -- New York, N.Y. -- Science. 1982 Jan 8;215(4529):187-8.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/7053570" target="_blank"〉PubMed〈/a〉
    Keywords: Amygdala/cytology ; Animals ; Caudate Nucleus/cytology/*metabolism ; Cerebral Cortex/cytology ; Cholecystokinin/*metabolism ; Female ; Neural Pathways/cytology ; Putamen/cytology/*metabolism ; Rats
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1982-08-27
    Description: Functional high- and low-affinity choline transport processes from rat cortical plasma membranes were reconstituted in phosphatidylcholine bilayer liposomes. The high-affinity choline transporter demonstrated a pharmacological profile and ion dependency that were identical to those of intact synaptosomes. This preparation may be used to further characterize choline transport and, with appropriate supplementation, to investigate the release of acetylcholine in the absence of synaptic vesicles.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Meyer, E M -- Cooper, J R -- NS 09836/NS/NINDS NIH HHS/ -- New York, N.Y. -- Science. 1982 Aug 27;217(4562):843-5.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/7100928" target="_blank"〉PubMed〈/a〉
    Keywords: Acetylcholine/metabolism ; Animals ; Biological Transport ; Cell Membrane/metabolism ; Chlorides/metabolism ; Choline/*metabolism ; Kinetics ; Lipid Bilayers/metabolism ; Liposomes/*metabolism ; Phosphatidylcholines/metabolism ; Rats ; Sodium/metabolism ; Synaptosomes/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 1987-11-13
    Description: The long-term effects of excitotoxic lesions in the nucleus basalis magnocellularis of the rat were found to mimic several neuropathological and chemical changes associated with Alzheimer's disease. Neuritic plaque-like structures, neurofibrillary changes, and neuronal atrophy or loss were observed in the frontoparietal cortex, hippocampus, amygdala, and entorhinal cortex 14 months after the lesions were made. Cholinergic markers in neocortex were reduced, while catecholamine and indoleamine metabolism was largely unaffected at this time. Bilateral lesions of the nucleus basalis magnocellularis increased somatostatin and neuropeptide Y in the cortex of the rat by at least 138 and 284 percent, respectively, suggesting a functional interaction between cholinergic and peptidergic neurons that may differ from that in Alzheimer's disease.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Arendash, G W -- Millard, W J -- Dunn, A J -- Meyer, E M -- HD 17933/HD/NICHD NIH HHS/ -- New York, N.Y. -- Science. 1987 Nov 13;238(4829):952-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biology, University of South Florida, Tampa 33620.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2890210" target="_blank"〉PubMed〈/a〉
    Keywords: Acetylcholinesterase/metabolism ; Animals ; Biogenic Amines/metabolism ; Brain/metabolism/*pathology ; Cerebral Cortex/metabolism/*pathology ; Choline/metabolism ; Choline O-Acetyltransferase/metabolism ; Male ; Neuropeptide Y/analysis ; Olivary Nucleus/*physiology ; Organ Specificity ; Rats ; Rats, Inbred Strains ; Somatostatin/analysis
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...