ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2001-03-07
    Description: Little is known about the innate defense mechanisms of the male reproductive tract. We cloned a 385-base pair complementary DNA and its genomic DNA named Bin1b that is exclusively expressed in the caput region of the rat epididymis and that is responsible for sperm maturation, storage, and protection. Bin1b exhibits structural characteristics and antimicrobial activity similar to that of cationic antimicrobial peptides, beta-defensins. Bin1b is maximally expressed when the rats are sexually mature and can be up-regulated by inflammation. Bin1b appears to be a natural epididymis-specific antimicrobial peptide that plays a role in reproductive tract host defense and male fertility.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Li, P -- Chan, H C -- He, B -- So, S C -- Chung, Y W -- Shang, Q -- Zhang, Y D -- Zhang, Y L -- New York, N.Y. -- Science. 2001 Mar 2;291(5509):1783-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institute for Biological Sciences, Chinese Academy of Sciences, 320, Yue-Yang Road, Shanghai 200031, China.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11230693" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cells, Cultured ; Cloning, Molecular ; DNA, Complementary ; Epididymis/*immunology/physiology ; Epididymitis/immunology ; Escherichia coli/growth & development ; Gene Expression Profiling ; Gene Expression Regulation, Developmental ; Genes ; Humans ; Male ; Molecular Sequence Data ; Oligonucleotides, Antisense/pharmacology ; RNA, Messenger/genetics/metabolism ; Rats ; Rats, Sprague-Dawley ; Sequence Alignment ; Sexual Maturation ; Spermatozoa/physiology ; Up-Regulation ; beta-Defensins/chemistry/*genetics/pharmacology/*physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2010-08-13
    Description: The use of homologous recombination to modify genes in embryonic stem (ES) cells provides a powerful means to elucidate gene function and create disease models. Application of this technology to engineer genes in rats has not previously been possible because of the absence of germline-competent ES cells in this species. We have recently established authentic rat ES cells. Here we report the generation of gene knockout rats using the ES-cell-based gene targeting technology. We designed a targeting vector to disrupt the tumour suppressor gene p53 (also known as Tp53) in rat ES cells by means of homologous recombination. p53 gene-targeted rat ES cells can be routinely generated. Furthermore, the p53 gene-targeted mutation in the rat ES-cell genome can transmit through the germ line via ES-cell rat chimaeras to create p53 gene knockout rats. The rat is the most widely used animal model in biological research. The establishment of gene targeting technology in rat ES cells, in combination with advances in genomics and the vast amount of research data on physiology and pharmacology in this species, now provide a powerful new platform for the study of human disease.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2937076/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2937076/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Tong, Chang -- Li, Ping -- Wu, Nancy L -- Yan, Youzhen -- Ying, Qi-Long -- 1R01 RR025881/RR/NCRR NIH HHS/ -- R01 OD010926/OD/NIH HHS/ -- R01 RR025881/RR/NCRR NIH HHS/ -- R01 RR025881-01A2/RR/NCRR NIH HHS/ -- England -- Nature. 2010 Sep 9;467(7312):211-3. doi: 10.1038/nature09368. Epub 2010 Aug 11.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research at USC, Department of Cell and Neurobiology, Keck School of Medicine, University of Southern California, Los Angeles, California 90033, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20703227" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Base Sequence ; Cell Culture Techniques ; Embryo, Mammalian/cytology ; Embryonic Stem Cells/*cytology ; Female ; Gene Knockout Techniques/*methods ; *Genes, p53 ; Germ-Line Mutation ; Male ; Mice ; Molecular Sequence Data ; Rats/*genetics ; Rats, Inbred F344 ; Rats, Sprague-Dawley ; Recombination, Genetic
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2010-06-19
    Description: Functional receptive fields of neurons in sensory cortices undergo progressive refinement during development. Such refinement may be attributed to the pruning of non-optimal excitatory inputs, reshaping of the excitatory tuning profile through modifying the strengths of individual inputs, or strengthening of cortical inhibition. These models have not been directly tested because of the technical difficulties in assaying the spatiotemporal patterns of functional synaptic inputs during development. Here we apply in vivo whole-cell voltage-clamp recordings to the recipient layer 4 neurons in the rat primary auditory cortex (A1) to determine the developmental changes in the frequency-intensity tonal receptive fields (TRFs) of their excitatory and inhibitory inputs. Surprisingly, we observe co-tuned excitation and inhibition immediately after the onset of hearing, suggesting that a tripartite thalamocortical circuit with relatively strong feedforward inhibition is formed independently of auditory experience. The frequency ranges of tone-driven excitatory and inhibitory inputs first expand within a few days of the onset of hearing and then persist into adulthood. The latter phase is accompanied by a sharpening of the excitatory but not inhibitory frequency tuning profile, which results in relatively broader inhibitory tuning in adult A1 neurons. Thus the development of cortical synaptic TRFs after the onset of hearing is marked by a slight breakdown of previously formed excitation-inhibition balance. Our results suggest that functional refinement of cortical TRFs does not require a selective pruning of inputs, but may depend more on a fine adjustment of excitatory input strengths.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2909826/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2909826/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Sun, Yujiao J -- Wu, Guangying K -- Liu, Bao-Hua -- Li, Pingyang -- Zhou, Mu -- Xiao, Zhongju -- Tao, Huizhong W -- Zhang, Li I -- EY018718/EY/NEI NIH HHS/ -- EY019049/EY/NEI NIH HHS/ -- R01 DC008983/DC/NIDCD NIH HHS/ -- R01 DC008983-01/DC/NIDCD NIH HHS/ -- R01 DC008983-02/DC/NIDCD NIH HHS/ -- R01 DC008983-03/DC/NIDCD NIH HHS/ -- R01 DC008983-04/DC/NIDCD NIH HHS/ -- R01 EY019049/EY/NEI NIH HHS/ -- R01 EY019049-02/EY/NEI NIH HHS/ -- R01DC008983/DC/NIDCD NIH HHS/ -- R03 DC006814/DC/NIDCD NIH HHS/ -- R03 DC006814-01A1/DC/NIDCD NIH HHS/ -- R03 DC006814-02/DC/NIDCD NIH HHS/ -- R03 DC006814-03/DC/NIDCD NIH HHS/ -- R21 DC008588/DC/NIDCD NIH HHS/ -- R21 DC008588-01/DC/NIDCD NIH HHS/ -- R21 DC008588-02/DC/NIDCD NIH HHS/ -- R21DC008588/DC/NIDCD NIH HHS/ -- UL1 RR025755/RR/NCRR NIH HHS/ -- England -- Nature. 2010 Jun 17;465(7300):927-31. doi: 10.1038/nature09079.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, California 90089, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20559386" target="_blank"〉PubMed〈/a〉
    Keywords: Acoustic Stimulation ; Animals ; Auditory Cortex/growth & development/*physiology ; Auditory Pathways/physiology ; Electrical Synapses/physiology ; Excitatory Postsynaptic Potentials/*physiology ; Hearing/physiology ; Neural Inhibition/*physiology ; Patch-Clamp Techniques ; Rats ; Rats, Sprague-Dawley ; Sensory Receptor Cells/*physiology ; Time Factors
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2016-02-09
    Description: Sighs are long, deep breaths expressing sadness, relief or exhaustion. Sighs also occur spontaneously every few minutes to reinflate alveoli, and sighing increases under hypoxia, stress, and certain psychiatric conditions. Here we use molecular, genetic, and pharmacologic approaches to identify a peptidergic sigh control circuit in murine brain. Small neural subpopulations in a key breathing control centre, the retrotrapezoid nucleus/parafacial respiratory group (RTN/pFRG), express bombesin-like neuropeptide genes neuromedin B (Nmb) or gastrin-releasing peptide (Grp). These project to the preBotzinger Complex (preBotC), the respiratory rhythm generator, which expresses NMB and GRP receptors in overlapping subsets of ~200 neurons. Introducing either neuropeptide into preBotC or onto preBotC slices, induced sighing or in vitro sigh activity, whereas elimination or inhibition of either receptor reduced basal sighing, and inhibition of both abolished it. Ablating receptor-expressing neurons eliminated basal and hypoxia-induced sighing, but left breathing otherwise intact initially. We propose that these overlapping peptidergic pathways comprise the core of a sigh control circuit that integrates physiological and perhaps emotional input to transform normal breaths into sighs.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Li, Peng -- Janczewski, Wiktor A -- Yackle, Kevin -- Kam, Kaiwen -- Pagliardini, Silvia -- Krasnow, Mark A -- Feldman, Jack L -- HL40959/HL/NHLBI NIH HHS/ -- HL70029/HL/NHLBI NIH HHS/ -- NS72211/NS/NINDS NIH HHS/ -- R01 HL040959/HL/NHLBI NIH HHS/ -- R01 HL070029/HL/NHLBI NIH HHS/ -- R01 NS072211/NS/NINDS NIH HHS/ -- Canadian Institutes of Health Research/Canada -- Howard Hughes Medical Institute/ -- England -- Nature. 2016 Feb 18;530(7590):293-7. doi: 10.1038/nature16964. Epub 2016 Feb 8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry and Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, California 94305, USA. ; Systems Neurobiology Laboratory, Department of Neurobiology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California 90095, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26855425" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Bombesin/pharmacology ; Emotions/physiology ; Female ; Gastrin-Releasing Peptide/deficiency/genetics/*metabolism ; In Vitro Techniques ; Male ; Mice ; Mice, Inbred C57BL ; Neurokinin B/*analogs & derivatives/deficiency/genetics/metabolism/pharmacology ; Neurons/drug effects/*physiology ; Rats ; Rats, Sprague-Dawley ; Receptors, Bombesin/*metabolism ; *Respiration/drug effects ; Respiratory Center/cytology/drug effects/physiology ; Ribosome Inactivating Proteins, Type 1/pharmacology ; Signal Transduction/drug effects/*physiology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-06-27
    Description: Research and development on refractory dielectrics for integrated circuits
    Keywords: ELECTRONIC EQUIPMENT
    Type: NASA-CR-86291
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-06-27
    Description: Refractory material dielectrics for integrated circuits
    Keywords: ELECTRONIC EQUIPMENT
    Type: NASA-CR-86293
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-06-27
    Description: Refractory dielectric for integrated circuits
    Keywords: ELECTRONIC EQUIPMENT
    Type: NASA-CR-86292
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-06-27
    Description: Process development for chemical deposition of aluminum oxide films as refractory dielectrics for integrated circuits
    Keywords: ELECTRONIC EQUIPMENT
    Type: NASA-CR-86290
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...