ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2007-05-26
    Description: Cellular responses to DNA damage are mediated by a number of protein kinases, including ATM (ataxia telangiectasia mutated) and ATR (ATM and Rad3-related). The outlines of the signal transduction portion of this pathway are known, but little is known about the physiological scope of the DNA damage response (DDR). We performed a large-scale proteomic analysis of proteins phosphorylated in response to DNA damage on consensus sites recognized by ATM and ATR and identified more than 900 regulated phosphorylation sites encompassing over 700 proteins. Functional analysis of a subset of this data set indicated that this list is highly enriched for proteins involved in the DDR. This set of proteins is highly interconnected, and we identified a large number of protein modules and networks not previously linked to the DDR. This database paints a much broader landscape for the DDR than was previously appreciated and opens new avenues of investigation into the responses to DNA damage in mammals.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Matsuoka, Shuhei -- Ballif, Bryan A -- Smogorzewska, Agata -- McDonald, E Robert 3rd -- Hurov, Kristen E -- Luo, Ji -- Bakalarski, Corey E -- Zhao, Zhenming -- Solimini, Nicole -- Lerenthal, Yaniv -- Shiloh, Yosef -- Gygi, Steven P -- Elledge, Stephen J -- 1U19A1067751/PHS HHS/ -- New York, N.Y. -- Science. 2007 May 25;316(5828):1160-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Genetics and Center for Genetics and Genomics, Brigham and Women's Hospital, Howard Hughes Medical Institute, Harvard Medical School, Boston, MA 02115, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17525332" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Ataxia Telangiectasia Mutated Proteins ; Binding Sites ; Cell Cycle/physiology ; Cell Cycle Proteins/*physiology ; Cell Line ; Computational Biology ; Consensus Sequence ; *DNA Damage ; *DNA Repair ; DNA Replication/physiology ; DNA-Binding Proteins/*physiology ; Humans ; Immunoprecipitation ; Isotope Labeling ; Mice ; NIH 3T3 Cells ; Phosphorylation ; Protein-Serine-Threonine Kinases/*physiology ; Proteome/isolation & purification/physiology ; RNA, Small Interfering ; Signal Transduction ; Substrate Specificity ; Tumor Suppressor Proteins/*physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2008-02-02
    Description: Retroviral short hairpin RNA (shRNA)-mediated genetic screens in mammalian cells are powerful tools for discovering loss-of-function phenotypes. We describe a highly parallel multiplex methodology for screening large pools of shRNAs using half-hairpin barcodes for microarray deconvolution. We carried out dropout screens for shRNAs that affect cell proliferation and viability in cancer cells and normal cells. We identified many shRNAs to be antiproliferative that target core cellular processes, such as the cell cycle and protein translation, in all cells examined. Moreover, we identified genes that are selectively required for proliferation and survival in different cell lines. Our platform enables rapid and cost-effective genome-wide screens to identify cancer proliferation and survival genes for target discovery. Such efforts are complementary to the Cancer Genome Atlas and provide an alternative functional view of cancer cells.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2981870/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2981870/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Schlabach, Michael R -- Luo, Ji -- Solimini, Nicole L -- Hu, Guang -- Xu, Qikai -- Li, Mamie Z -- Zhao, Zhenming -- Smogorzewska, Agata -- Sowa, Mathew E -- Ang, Xiaolu L -- Westbrook, Thomas F -- Liang, Anthony C -- Chang, Kenneth -- Hackett, Jennifer A -- Harper, J Wade -- Hannon, Gregory J -- Elledge, Stephen J -- F31 NS054507-01/NS/NINDS NIH HHS/ -- P01 CA013106/CA/NCI NIH HHS/ -- P01 CA013106-36/CA/NCI NIH HHS/ -- P01 CA013106-37/CA/NCI NIH HHS/ -- R01 AG011085/AG/NIA NIH HHS/ -- T32CA09216/CA/NCI NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2008 Feb 1;319(5863):620-4. doi: 10.1126/science.1149200.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute and Department of Genetics, Center for Genetics and Genomics, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18239126" target="_blank"〉PubMed〈/a〉
    Keywords: Breast Neoplasms/*genetics/pathology ; Cell Line ; Cell Line, Tumor ; *Cell Proliferation ; Cell Survival/genetics ; Colonic Neoplasms/*genetics/pathology ; Gene Library ; *Genes, Neoplasm ; Genetic Vectors ; Genome, Human ; Genomics/*methods ; Humans ; MicroRNAs ; Oligonucleotide Array Sequence Analysis ; RNA, Small Interfering ; Retroviridae/genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...