ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2019-06-28
    Description: A ram accelerator used as a hypervelocity launcher for large-scale aeroballistic range applications in hypersonics and aerodynamics research is presented. It is an in-bore ramjet device in which a projectile shaped like the centerbody of a supersonic ramjet is propelled down a stationary tube filled with a tailored combustible gas mixture. Ram accelerator operation has been demonstrated at 39 mm and 90 mm bores, supporting the proposition that this launcher concept can be scaled up to very large bore diameters of the order of 30-60 cm. It is concluded that high quality data obtained from the tube wall and projectile during the aceleration process itself are very useful for understanding aerothermodynamics of hypersonic flow in general, and for providing important CFD validation benchmarks.
    Keywords: RESEARCH AND SUPPORT FACILITIES (AIR)
    Type: AIAA PAPER 92-3949
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-06-28
    Description: Work on hypersonic propulsion research using a ram accelerator is presented. Several different ram accelerator propulsive cycles have been experimentally demonstrated over the Mach number range of 3 to 8.5. The subsonic, thermally choked combustion mode has accelerated projectiles to near the Chapman-Jouguet (C-J) detonation velocity within many different propellant mixtures. In the transdetonative velocity regime (85 to 115 percent of C-J speed), projectiles have established a propulsive cycle which allows them to transition smoothly from subdetonative to superdetonative velocities. Luminosity data indicate that the combustion process moves forward onto the projectile body as it approaches the C-J speed. In the superdetonative velocity range, the projectiles accelerate while always traveling faster than the C-J velocity. Ram accelerator projectiles operating continuously through these velocity regimes generate distinctive hypersonic phenomena which can be studied very effectively in the laboratory. These results would be very useful for validating sophisticated CFD computer codes and in collecting engineering data for potential airbreathing hypersonic propulsive systems.
    Keywords: RESEARCH AND SUPPORT FACILITIES (AIR)
    Type: AIAA PAPER 91-2489
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-13
    Description: The Engine Components Instrumentation Development Facility at NASA Lewis is a unique aeronautics facility dedicated to the development of innovative instrumentation for turbine engine component testing. Containing two separate wind tunnels, the facility is capable of simulating many flow conditions found in most turbine engine components. This facility's broad range of capabilities as well as its versatility provide an excellent location for the development of novel testing techniques. These capabilities thus allow a more efficient use of larger and more complex engine component test facilities.
    Keywords: RESEARCH AND SUPPORT FACILITIES (AIR)
    Type: NASA-TM-105644 , E-6999 , NAS 1.15:105644 , AIAA PAPER 92-3995 , Aerospace Ground Testing Conference; Jul 06, 1992 - Jul 08, 1992; Nashville, TN; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-08-27
    Description: The Engine Components Instrumentation Development Facility at NASA Lewis is a unique aeronautics facility dedicated to the development of innovative instrumentation for turbine engine component testing. Containing two separate wind tunnels, the facility is capable of simulating many flow conditions found in most turbine engine components. This facility's broad range of capabilities as well as its versatility provide an excellent location for the development of novel testing techniques. These capabilities thus allow a more efficient use of larger and more complex engine component test facilities.
    Keywords: RESEARCH AND SUPPORT FACILITIES (AIR)
    Type: AIAA PAPER 92-3995
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...