ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2012. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Climate 25 (2012): 6743–6755, doi:10.1175/JCLI-D-11-00549.1.
    Description: From 1969 to 1971 convection in the Labrador Sea shut down, thus interrupting the formation of the intermediate/dense water masses. The shutdown has been attributed to the surface freshening induced by the Great Salinity Anomaly (GSA), a freshwater anomaly in the subpolar North Atlantic. The abrupt resumption of convection in 1972, in contrast, is attributed to the extreme atmospheric forcing of that winter. Here oceanic and atmospheric data collected in the Labrador Sea at Ocean Weather Station Bravo and a one-dimensional mixed layer model are used to examine the causes of the shutdown and resumption of convection in detail. These results highlight the tight coupling of the ocean and atmosphere in convection regions and the need to resolve both components to correctly represent convective processes in the ocean. They are also relevant to present-day conditions given the increased ice melt in the Arctic Ocean and from the Greenland Ice Sheet. The analysis herein shows that the shutdown was initiated by the GSA-induced freshening as well as the mild 1968/69 winter. After the shutdown had begun, however, the continuing lateral freshwater flux as well as two positive feedbacks [both associated with the sea surface temperature (SST) decrease due to lack of convective mixing with warmer subsurface water] further inhibited convection. First, the SST decrease reduced the heat flux to the atmosphere by reducing the air–sea temperature gradient. Second, it further reduced the surface buoyancy loss by reducing the thermal expansion coefficient of the surface water. In 1972 convection resumed because of both the extreme atmospheric forcing and advection of saltier waters into the convection region.
    Description: This research was funded by a grant from the NWO/SRON User Support Programme Space Research. FS acknowledges support from OCE- 0850416 and NOAA NA08OAR4310569.
    Description: 2013-04-01
    Keywords: Atmosphere-ocean interaction ; Intermediate waters ; Oceanic variability
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-10-26
    Description: © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Almansi, M., Haine, T. W. N., Gelderloos, R., & Pickart, R. S. Evolution of Denmark Strait overflow cyclones and their relationship to overflow surges. Geophysical Research Letters, 47(4), (2020): e2019GL086759, doi:10.1029/2019GL086759.
    Description: Mesoscale features present at the Denmark Strait sill regularly enhance the volume transport of the Denmark Strait overflow (DSO). They are important for the Atlantic Meridional Overturning Circulation and ultimately, for the global climate system. Using a realistic numerical model, we find new evidence of the causal relationship between overflow surges (i.e., mesoscale features associated with high‐transport events) and DSO cyclones observed downstream. Most of the cyclones form at the Denmark Strait sill during overflow surges and, because of potential vorticity conservation and stretching of the water column, grow as they move equatorward. A fraction of the cyclones form downstream of the sill, when anticyclonic vortices formed during high‐transport events start collapsing. Regardless of their formation mechanism, DSO cyclones weaken starting roughly 150 km downstream of the sill, and potential vorticity is only materially conserved during the growth phase.
    Description: This material is based upon work supported by the National Science Foundation under Grants OCE‐1433448, OCE‐1633124, OCE‐1756361, and OCE‐1756863. The numerical model was run on the Maryland Advanced Research Computing Center (MARCC). Marcello Magaldi helped to configure the model. OceanSpy and several packages from the Pangeo software ecosystem have been used to postprocess the model output. The numerical solutions are publicly available on SciServer (http://sciserver.org), which is developed and administered by the Institute for Data Intensive Engineering and Science at Johns Hopkins University. Instructions for accessing the data set are available at this site (https://oceanspy.readthedocs.io). Two anonymous reviewers helped to improve the content of this manuscript.
    Keywords: Denmark Strait overflow ; DSO cyclones ; Boluses ; Pulses
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...