ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1573-4943
    Keywords: RNase A ; protein fragment ; disulfide-loop formation ; native-like conformation ; protein folding
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology
    Notes: Abstract A 30-residue peptide was obtained from ribonuclease A by chemical cleavage with cyanogen bromide, subsequent sulfitolysis with concomitant S-sulfonation, and finally enzymatic cleavage withStaphylococcus aureus protease. The peptide was converted to the free thiol form by reductive cleavage of the S-sulfo-protecting groups withd,l-dithiothreitol. This peptide consisted of residues 50–79 of the native sequence of ribonuclease A, with the exception that methionine-79 had been converted to homoserine. Included in this sequence are residues cysteine-65 and cysteine-72, which form a disulfide bond in the native enzyme, as well as cysteine-58. This molecule may form one of three possible intramolecular disulfide bonds upon thiol oxidation, viz. one loop of 15 and 2 of 8 residues each. These isomeric peptides were prepared by oxidation with cystamine, 2-aminoethanethiolation of residual thiols, and fractionation by reverse-phase high-performance liquid chromatography. Disulfide pairings were established by mapping the tryptic fragments and confirming their composition by amino acid analysis. After protracted incubation under oxidizing conditions at 25.0°C andp H 8.0, the 26-member ring incorporating the native disulfide bond between residues 65 and 72 is the dominant product. Assuming that equilibrium is established, we infer that local interactions in the sequence of ribonuclease A significantly stabilize the native 8-residue disulfide loop with respect to the non-native 8-residue loop (ΔG°=−1.1±0.1 kcal mole−1). The implications of this observation for the oxidative folding of the intact protein are discussed.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    The protein journal 10 (1991), S. 273-285 
    ISSN: 1573-4943
    Keywords: Protein folding ; backbone structure ; helical structure ; physical factors
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology
    Notes: Abstract Amino acid residues in a globular protein fold against one another into a compact structure. We have sought common physical factors within similarly folded backbone structures in such proteins which might influence the folding and which could be used in predicting the backbone structure. The physical factors examined are the 10 orthogonal ones identified by Kideraet al. (1985a). Comparison of the smoothed physical factor profiles between sequences, which have similar backbone structures, shows that there is good agreement among the profiles of helical stretches, but not for other backbone structures that have been examined. This is ascribed to the fact that helical structures involve local interactions, which then require similar physical profiles to form, but that other structures are not so strongly locally determined in the native structure.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...