ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2001-12-12
    Description: The Staphylococcus aureus multidrug binding protein QacR represses transcription of the qacA multidrug transporter gene and is induced by structurally diverse cationic lipophilic drugs. Here, we report the crystal structures of six QacR-drug complexes. Compared to the DNA bound structure, drug binding elicits a coil-to-helix transition that causes induction and creates an expansive multidrug-binding pocket, containing four glutamates and multiple aromatic and polar residues. These structures indicate the presence of separate but linked drug-binding sites within a single protein. This multisite drug-binding mechanism is consonant with studies on multidrug resistance transporters.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Schumacher, M A -- Miller, M C -- Grkovic, S -- Brown, M H -- Skurray, R A -- Brennan, R G -- AI 48593/AI/NIAID NIH HHS/ -- New York, N.Y. -- Science. 2001 Dec 7;294(5549):2158-63.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry and Molecular Biology, Oregon Health & Science University, Portland, OR 97201, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11739955" target="_blank"〉PubMed〈/a〉
    Keywords: Bacterial Proteins/chemistry/metabolism ; Berberine/chemistry/metabolism ; Binding Sites ; Crystallization ; Crystallography, X-Ray ; DNA/metabolism ; Dequalinium/chemistry/metabolism ; Dimerization ; Drug Resistance, Multiple, Bacterial ; Ethidium/chemistry/metabolism ; Gentian Violet/chemistry/*metabolism ; Glutamates/chemistry ; Heterocyclic Compounds/chemistry/*metabolism ; Hydrogen Bonding ; Hydrophobic and Hydrophilic Interactions ; Models, Molecular ; Molecular Structure ; Protein Conformation ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Repressor Proteins/*chemistry/metabolism ; Rhodamines/chemistry/metabolism ; Rosaniline Dyes/chemistry/*metabolism ; Staphylococcus aureus
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2009-07-07
    Description: To reach the mammalian gut, enteric bacteria must pass through the stomach. Many such organisms survive exposure to the harsh gastric environment (pH 1.5-4) by mounting extreme acid-resistance responses, one of which, the arginine-dependent system of Escherichia coli, has been studied at levels of cellular physiology, molecular genetics and protein biochemistry. This multiprotein system keeps the cytoplasm above pH 5 during acid challenge by continually pumping protons out of the cell using the free energy of arginine decarboxylation. At the heart of the process is a 'virtual proton pump' in the inner membrane, called AdiC, that imports L-arginine from the gastric juice and exports its decarboxylation product agmatine. AdiC belongs to the APC superfamily of membrane proteins, which transports amino acids, polyamines and organic cations in a multitude of biological roles, including delivery of arginine for nitric oxide synthesis, facilitation of insulin release from pancreatic beta-cells, and, when inappropriately overexpressed, provisioning of certain fast-growing neoplastic cells with amino acids. High-resolution structures and detailed transport mechanisms of APC transporters are currently unknown. Here we describe a crystal structure of AdiC at 3.2 A resolution. The protein is captured in an outward-open, substrate-free conformation with transmembrane architecture remarkably similar to that seen in four other families of apparently unrelated transport proteins.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2745212/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2745212/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Fang, Yiling -- Jayaram, Hariharan -- Shane, Tania -- Kolmakova-Partensky, Ludmila -- Wu, Fang -- Williams, Carole -- Xiong, Yong -- Miller, Christopher -- P30 EB009998/EB/NIBIB NIH HHS/ -- R01 GM031768/GM/NIGMS NIH HHS/ -- R01 GM031768-26/GM/NIGMS NIH HHS/ -- R01 GM089688/GM/NIGMS NIH HHS/ -- T32 NS 07292/NS/NINDS NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2009 Aug 20;460(7258):1040-3. doi: 10.1038/nature08201. Epub 2009 Jul 5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry, Howard Hughes Medical Institute, Brandeis University, Waltham, Massachusetts 02454, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19578361" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Amino Acid Transport Systems/*chemistry/metabolism ; Antiporters/*chemistry/metabolism ; Bacterial Proteins/*chemistry ; Crystallography, X-Ray ; Escherichia coli/*chemistry ; Escherichia coli Proteins/*chemistry/metabolism ; Models, Molecular ; Molecular Sequence Data ; Multigene Family ; Protein Conformation ; Salmonella typhi/*chemistry ; Structural Homology, Protein
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 1990-08-13
    Description: The three-dimensional structure of charybdotoxin, a high-affinity peptide blocker of several potassium ion channels, was determined by two-dimensional nuclear magnetic resonance (2-D NMR) spectroscopy. Unambiguous NMR assignments of backbone and side chain hydrogens were made for all 37 amino acids. The structure was determined by distance geometry and refined by nuclear Overhauser and exchange spectroscopy back calculation. The peptide is built on a foundation of three antiparallel beta strands to which other parts of the sequence are attached by three disulfide bridges. The overall shape is roughly ellipsoidal, with axes of approximately 2.5 and 1.5 nanometers. Nine of the ten charged groups are located on one side of the ellipsoid, with seven of the eight positive residues lying in a stripe 2.5 nanometers in length. The other side displays three hydrophobic residues projecting prominently into aqueous solution. The structure rationalizes several mechanistic features of charybdotoxin block of the high-conductance Ca2(+)-activated K+ channel.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Massefski, W Jr -- Redfield, A G -- Hare, D R -- Miller, C -- GM-20168/GM/NIGMS NIH HHS/ -- GM-31768/GM/NIGMS NIH HHS/ -- RR0031/RR/NCRR NIH HHS/ -- New York, N.Y. -- Science. 1990 Aug 3;249(4968):521-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Graduate Department of Biochemistry, Brandeis University, Waltham, MA 02254.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/1696395" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Charybdotoxin ; Disulfides/analysis ; Magnetic Resonance Spectroscopy/methods ; Models, Molecular ; Molecular Sequence Data ; Potassium Channels/drug effects ; Protein Conformation ; *Scorpion Venoms/pharmacology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1990-03-09
    Description: Under stationary conditions, opening and closing of single Torpedo electroplax chloride channels show that the number of transitions per unit time between inactivated and conducting states are unequal in opposite directions. This asymmetry, which increases with transmembrane electrochemical gradient for the chloride ion, violates the principle of microscopic reversibility and thus demonstrates that the channel-gating process is not at thermodynamic equilibrium. The results imply that the channel's conformational states are coupled to the transmembrane electrochemical gradient of the chloride ion.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Richard, E A -- Miller, C -- GM-31768/GM/NIGMS NIH HHS/ -- NS-07292/NS/NINDS NIH HHS/ -- New York, N.Y. -- Science. 1990 Mar 9;247(4947):1208-10.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute, Graduate Department of Biochemistry, Brandeis University, Waltham, MA 02254.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2156338" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Membrane/*physiology ; Chloride Channels ; Chlorides/metabolism/*physiology ; Electric Conductivity ; Electric Organ/*physiology ; Electrochemistry ; Membrane Potentials ; Membrane Proteins/*physiology ; Models, Biological ; Protein Conformation ; Thermodynamics ; Torpedo/*physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1991-05-24
    Description: Voltage-gated potassium channels make up a large molecular family of integral membrane proteins that are fundamentally involved in the generation of bioelectric signals such as nerve impulses. These proteins span the cell membrane, forming potassium-selective pores that are rapidly switched open or closed by changes in membrane voltage. After the cloning of the first potassium channel over 3 years ago, recombinant DNA manipulation of potassium channel genes is now leading to a molecular understanding of potassium channel behavior. During the past year, functional domains responsible for channel gating and potassium selectivity have been identified, and detailed structural pictures underlying these functions are beginning to emerge.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Miller, C -- New York, N.Y. -- Science. 1991 May 24;252(5009):1092-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute, Graduate Department of Biochemistry, Brandeis University, Waltham, MA 02254.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2031183" target="_blank"〉PubMed〈/a〉
    Keywords: Action Potentials ; Amino Acid Sequence ; Animals ; Ion Channel Gating ; Models, Structural ; Molecular Sequence Data ; Potassium Channels/genetics/*physiology ; Protein Conformation
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2006-04-29
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Miller, Christopher -- New York, N.Y. -- Science. 2006 Apr 28;312(5773):534-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry, Howard Hughes Medical Institute, Brandeis University, Waltham, MA 02454, USA. cmiller@brandeis.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/16645081" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Humans ; *Ion Channel Gating ; Ion Channels/*chemistry/*physiology ; Mice ; Protein Conformation ; Protein Structure, Secondary ; Protein Structure, Tertiary ; *Protons
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2010-11-05
    Description: Channels and transporters of the ClC family cause the transmembrane movement of inorganic anions in service of a variety of biological tasks, from the unusual-the generation of the kilowatt pulses with which electric fish stun their prey-to the quotidian-the acidification of endosomes, vacuoles and lysosomes. The homodimeric architecture of ClC proteins, initially inferred from single-molecule studies of an elasmobranch Cl(-) channel and later confirmed by crystal structures of bacterial Cl(-)/H(+) antiporters, is apparently universal. Moreover, the basic machinery that enables ion movement through these proteins-the aqueous pores for anion diffusion in the channels and the ion-coupling chambers that coordinate Cl(-) and H(+) antiport in the transporters-are contained wholly within each subunit of the homodimer. The near-normal function of a bacterial ClC transporter straitjacketed by covalent crosslinks across the dimer interface and the behaviour of a concatemeric human homologue argue that the transport cycle resides within each subunit and does not require rigid-body rearrangements between subunits. However, this evidence is only inferential, and because examples are known in which quaternary rearrangements of extramembrane ClC domains that contribute to dimerization modulate transport activity, we cannot declare as definitive a 'parallel-pathways' picture in which the homodimer consists of two single-subunit transporters operating independently. A strong prediction of such a view is that it should in principle be possible to obtain a monomeric ClC. Here we exploit the known structure of a ClC Cl(-)/H(+) exchanger, ClC-ec1 from Escherichia coli, to design mutants that destabilize the dimer interface while preserving both the structure and the transport function of individual subunits. The results demonstrate that the ClC subunit alone is the basic functional unit for transport and that cross-subunit interaction is not required for Cl(-)/H(+) exchange in ClC transporters.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3057488/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3057488/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Robertson, Janice L -- Kolmakova-Partensky, Ludmila -- Miller, Christopher -- Howard Hughes Medical Institute/ -- England -- Nature. 2010 Dec 9;468(7325):844-7. doi: 10.1038/nature09556. Epub 2010 Nov 3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry, Howard Hughes Medical Institute, Brandeis University, Waltham, Massachusetts 02454, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21048711" target="_blank"〉PubMed〈/a〉
    Keywords: Binding Sites ; Chloride Channels/*chemistry/genetics/*metabolism ; Chlorides/metabolism ; Crystallization ; Crystallography, X-Ray ; Escherichia coli/*chemistry/genetics ; Escherichia coli Proteins/*chemistry/genetics/*metabolism ; Hydrogen/metabolism ; Liposomes/chemistry/metabolism ; Models, Molecular ; Mutant Proteins/*chemistry/genetics/*metabolism ; Phospholipids/metabolism ; Protein Conformation ; *Protein Engineering ; Protein Multimerization/genetics ; Protein Subunits/chemistry/metabolism ; Tryptophan/genetics/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2015-09-08
    Description: To contend with hazards posed by environmental fluoride, microorganisms export this anion through F(-)-specific ion channels of the Fluc family. Since the recent discovery of Fluc channels, numerous idiosyncratic features of these proteins have been unearthed, including strong selectivity for F(-) over Cl(-) and dual-topology dimeric assembly. To understand the chemical basis for F(-) permeation and how the antiparallel subunits convene to form a F(-)-selective pore, here we solve the crystal structures of two bacterial Fluc homologues in complex with three different monobody inhibitors, with and without F(-) present, to a maximum resolution of 2.1 A. The structures reveal a surprising 'double-barrelled' channel architecture in which two F(-) ion pathways span the membrane, and the dual-topology arrangement includes a centrally coordinated cation, most likely Na(+). F(-) selectivity is proposed to arise from the very narrow pores and an unusual anion coordination that exploits the quadrupolar edges of conserved phenylalanine rings.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Stockbridge, Randy B -- Kolmakova-Partensky, Ludmila -- Shane, Tania -- Koide, Akiko -- Koide, Shohei -- Miller, Christopher -- Newstead, Simon -- 102890/Z/13/Z/Wellcome Trust/United Kingdom -- K99 GM111767/GM/NIGMS NIH HHS/ -- K99-GM-111767/GM/NIGMS NIH HHS/ -- R01 GM107023/GM/NIGMS NIH HHS/ -- R01-GM107023/GM/NIGMS NIH HHS/ -- U54 GM087519/GM/NIGMS NIH HHS/ -- U54-GM087519/GM/NIGMS NIH HHS/ -- England -- Nature. 2015 Sep 24;525(7570):548-51. doi: 10.1038/nature14981. Epub 2015 Sep 7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry, Howard Hughes Medical Institute, Brandeis University, Waltham, Massachusetts 02454, USA. ; Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, Illinois 60637, USA. ; Department of Physiology, Anatomy, and Genetics, University of Oxford, Oxford OX1 3QU, UK. ; Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26344196" target="_blank"〉PubMed〈/a〉
    Keywords: Anions/chemistry/metabolism/pharmacology ; Bacterial Proteins/*chemistry/*metabolism ; Cell Membrane/metabolism ; Crystallography, X-Ray ; Fluorides/chemistry/*metabolism/*pharmacology ; Ion Channels/*chemistry/*metabolism ; Models, Biological ; Models, Molecular ; Phenylalanine/metabolism ; Protein Conformation
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...