ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1991-05-24
    Description: Short peptides that contain the basic region of the HIV-1 Tat protein bind specifically to a bulged region in TAR RNA. A peptide that contained nine arginines (R9) also bound specifically to TAR, and a mutant Tat protein that contained R9 was fully active for transactivation. In contrast, a peptide that contained nine lysines (K9) bound TAR poorly and the corresponding protein gave only marginal activity. By starting with the K9 mutant and replacing lysine residues with arginines, a single arginine was identified that is required for specific binding and transactivation. Ethylation interference experiments suggest that this arginine contacts two adjacent phosphates at the RNA bulge. Model building suggests that the arginine eta nitrogens and the epsilon nitrogen can form specific networks of hydrogen bonds with adjacent pairs of phosphates and that these arrangements are likely to occur near RNA loops and bulges and not within double-stranded A-form RNA. Thus, arginine side chains may be commonly used to recognize specific RNA structures.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Calnan, B J -- Tidor, B -- Biancalana, S -- Hudson, D -- Frankel, A D -- AI29135/AI/NIAID NIH HHS/ -- New York, N.Y. -- Science. 1991 May 24;252(5009):1167-71.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Whitehead Institute for Biomedical Research, Nine Cambridge Center, MA 02142.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/1709522" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; *Arginine ; Base Sequence ; Cloning, Molecular ; Gene Products, tat/genetics/*metabolism ; Genes, tat ; HIV Long Terminal Repeat/physiology ; HIV-1/genetics/*metabolism ; Hydrogen Bonding ; Membrane Proteins/genetics/metabolism ; Molecular Sequence Data ; Mutagenesis, Insertional ; Nucleic Acid Conformation ; Peptides/metabolism ; Protein Binding ; RNA/genetics/*metabolism ; Transcriptional Activation ; tat Gene Products, Human Immunodeficiency Virus
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2011-12-23
    Description: Human immunodeficiency virus (HIV) has a small genome and therefore relies heavily on the host cellular machinery to replicate. Identifying which host proteins and complexes come into physical contact with the viral proteins is crucial for a comprehensive understanding of how HIV rewires the host's cellular machinery during the course of infection. Here we report the use of affinity tagging and purification mass spectrometry to determine systematically the physical interactions of all 18 HIV-1 proteins and polyproteins with host proteins in two different human cell lines (HEK293 and Jurkat). Using a quantitative scoring system that we call MiST, we identified with high confidence 497 HIV-human protein-protein interactions involving 435 individual human proteins, with approximately 40% of the interactions being identified in both cell types. We found that the host proteins hijacked by HIV, especially those found interacting in both cell types, are highly conserved across primates. We uncovered a number of host complexes targeted by viral proteins, including the finding that HIV protease cleaves eIF3d, a subunit of eukaryotic translation initiation factor 3. This host protein is one of eleven identified in this analysis that act to inhibit HIV replication. This data set facilitates a more comprehensive and detailed understanding of how the host machinery is manipulated during the course of HIV infection.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3310911/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3310911/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Jager, Stefanie -- Cimermancic, Peter -- Gulbahce, Natali -- Johnson, Jeffrey R -- McGovern, Kathryn E -- Clarke, Starlynn C -- Shales, Michael -- Mercenne, Gaelle -- Pache, Lars -- Li, Kathy -- Hernandez, Hilda -- Jang, Gwendolyn M -- Roth, Shoshannah L -- Akiva, Eyal -- Marlett, John -- Stephens, Melanie -- D'Orso, Ivan -- Fernandes, Jason -- Fahey, Marie -- Mahon, Cathal -- O'Donoghue, Anthony J -- Todorovic, Aleksandar -- Morris, John H -- Maltby, David A -- Alber, Tom -- Cagney, Gerard -- Bushman, Frederic D -- Young, John A -- Chanda, Sumit K -- Sundquist, Wesley I -- Kortemme, Tanja -- Hernandez, Ryan D -- Craik, Charles S -- Burlingame, Alma -- Sali, Andrej -- Frankel, Alan D -- Krogan, Nevan J -- P01 AI090935/AI/NIAID NIH HHS/ -- P01 AI090935-02/AI/NIAID NIH HHS/ -- P01 GM073732-05/GM/NIGMS NIH HHS/ -- P41 GM103481/GM/NIGMS NIH HHS/ -- P41 RR001081/RR/NCRR NIH HHS/ -- P41RR001614/RR/NCRR NIH HHS/ -- P50 GM081879/GM/NIGMS NIH HHS/ -- P50 GM081879-02/GM/NIGMS NIH HHS/ -- P50 GM082250/GM/NIGMS NIH HHS/ -- P50 GM082250-05/GM/NIGMS NIH HHS/ -- P50GM081879/GM/NIGMS NIH HHS/ -- P50GM082545/GM/NIGMS NIH HHS/ -- U54 RR022220/RR/NCRR NIH HHS/ -- England -- Nature. 2011 Dec 21;481(7381):365-70. doi: 10.1038/nature10719.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Cellular and Molecular Pharmacology, University of California, San Francisco, California 94158, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22190034" target="_blank"〉PubMed〈/a〉
    Keywords: Affinity Labels ; Amino Acid Sequence ; Conserved Sequence ; Eukaryotic Initiation Factor-3/chemistry/metabolism ; HEK293 Cells ; HIV Infections/metabolism/virology ; HIV Protease/metabolism ; HIV-1/*chemistry/*metabolism/physiology ; *Host-Pathogen Interactions ; Human Immunodeficiency Virus Proteins/analysis/chemistry/isolation & ; purification/*metabolism ; Humans ; Immunoprecipitation ; Jurkat Cells ; Mass Spectrometry ; Protein Binding ; Protein Interaction Mapping/*methods ; Protein Interaction Maps/*physiology ; Reproducibility of Results ; Virus Replication
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...