ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Polymer and Materials Science  (1)
  • Processing of glycosyl-phosphatidylinositol (GPI) anchor  (1)
  • STRUCTURAL MECHANICS
  • 1995-1999  (2)
  • 1
    ISSN: 1432-0983
    Keywords: Key words Bleomycin hydrolase ; Saccharomyces cerevisiae ; Thiol proteases ; Protein amphitropism ; Processing of glycosyl-phosphatidylinositol (GPI) anchor
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Bleomycin hydrolase, Blh1p, from yeast was co-purified with Gce1p, a cAMP-binding ectoprotein, anchored to the plasma membrane by a glycosyl-phosphatidylinositol (GPI) anchor. Blh1p is a hydrophilic thiol protease lacking transmembrane domains. We have used polyclonal antibodies to study the topology of the over-expressed protein in yeast and have found that it is amphitropic. Part of Blh1p is associated with plasma membranes, and most of the rest occurs in the cytosol. Both the growth conditions and calcium were found to have minor influences on the topology of Blh1p, in that glucose and the earth-alkali ion slightly enhanced recruitment to the membrane. We have examined the possibility that co-purification of Blh1p with Gce1p has a functional basis, and have observed that over-expression of BLH1 in yeast leads to an acceleration of the glucose-induced amphiphilic to hydrophilic conversion of Gce1p, wherein Blh1p could either directly catalyse the proteolytic removal of the polar headgroup of the GPI anchor subsequent to an initial lipolytic cleavage by a GPI-specific phospholipase C or indirectly modulate the reaction. The data show that a thiol protease is involved, but point to an indirect role of Blh1p in GPI processing. Proteases with similar or overlapping substrate specificity are likely to exist, since deletion of BLH1 neither entails a growth defect on any carbon source tested, nor the loss of proteolytic processing of the GPI anchor of Gce1p. Reduced proteolytic GPI processing is, however, observed in the blh1 mutant and the corresponding acceleration in the respective BLH1 multi-copy transformant.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Chichester [u.a.] : Wiley-Blackwell
    Surface and Interface Analysis 23 (1995), S. 155-162 
    ISSN: 0142-2421
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Physics
    Notes: A model system was developed to study the influence of the rubber formulation and/or the aging conditions on the adhesion between brass and rubber. The bonding compounds were vulcanized on thin, homogeneous brass layers that had been prepared by sputtering onto special polymeric substrates; some of these compounds were steam-aged under controlled conditions subsequently. After the separation of the polymeric film, combined analytical electron microscopy (transmission electron microscopy/energy dispersive spectroscopy; TEM/EDS) and sputter neutral mass spectrometry (SNMS) analyses were performed. While the TEM/EDS studies offer a detailed insight into the morphological structure of the interphase, the SNMS depth profiles allow a rapid and reliable differentiation between various rubber formulations. With these model samples the beneficial effect of boric acid esters on the adhesion of cobalt-containing bonding compounds, which is observed in a typical short-term adhesion test after steam-aging, can be explained: boric acid esters act with cobalt salts as corrosion inhibitors for brass, preventing the growth of a thick intermediate ZnO/Zn (OH)2 layer that is the starting point for delaminations.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...