ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Theoretical and applied genetics 76 (1988), S. 923-928 
    ISSN: 1432-2242
    Keywords: Genetic diversity ; Population genetics ; Bertholletia excelsa ; Brazil nut ; Isozyme analysis
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary We provide an estimate of genetic variation within and between two populations of Bertholletia excelsa (Brazil nut), a large canopy tree found in the rain forests of South America. Average heterozygosity is 0.190, and 54.3% of the sampled loci are polymorphic. The population structure deviates significantly from Hardy-Weinberg expectations for Fest2 and Pgm2 (F =0.405 and 0.443, respectively) in one population, and highly significantly (F=-0.341) for Gdh in the other population. Although allele frequencies of the two populations differ significantly for Aat2, Est5, Mdh1, and Mdh2B, Nei's coefficient of gene differentiation (Gst) indicates that the between-population component (Dst) of genic diversity represents only 3.75% of the size of the within-population component (Hs). The implications of these findings in terms of conservation genetics are that much of the genetic diversity of this species may be preserved within one or a few populations. However, such populations must be very large because it appears that the large amount of genetic variation in Brazil nut populations is maintained by extensive gene flow and bonds of mating over a large area. The genetic architecture of Bertholletia excelsa is similar to that expected for an extensively diploidized paleopolyploid species.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Theoretical and applied genetics 96 (1998), S. 950-956 
    ISSN: 1432-2242
    Keywords: Key words Poplars (Populus) ; Simple sequencerepeats ; Microsatellite loci ; Polymorphism ; Clone identification
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract  We have identified, isolated, and characterized microsatellite/simple sequence repeat (SSR) loci in trembling aspen (Populus tremuloides) by screening partial genomic libraries. We have also examined the compatibility and use of the P. tremuloides SSR primers to resolve microsatellites in other Populus species. Fourteen microsatellites were identified from 1600 clones screened. The TC/AG microsatellites were the most abundant. A total of 29 alleles were detected in 36 P. tremuloides individuals at the four SSR loci (two each of di- and tri-nucleotide repeats) characterized. The number of alleles at the SSR loci ranged from 5 to 11, with an average of 7.25 alleles per locus, and the observed heterozygosity ranged from 0.19 to 0.82, with a mean of 0.46 per locus. Although the highest polymorphism was observed for a dinucleotide SSR locus, the trinucleotide SSR loci showed substantial polymorphism. There were 34 unique multilocus genotypes among the 36 P. tremuloides individuals examined, and 89% of the individuals had unique multilocus genotypes. Two pairs of SSR primers were successful in PCR, amplifying genomic DNA and resolving microsatellites of comparable size from Populus deltoides, P. nigra, P.×canadensis, and P. maximowiczii. The microsatellite DNA markers developed could be used for clonal fingerprinting, certification of controlled crosses, genome mapping, marker-assisted early selection, genetic diversity assessments, and conservation and sustainable management of poplar genetic resources.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...