ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Polymer and Materials Science  (18)
  • 1
    Electronic Resource
    Electronic Resource
    Bognor Regis [u.a.] : Wiley-Blackwell
    Journal of Polymer Science Part B: Polymer Physics 27 (1989), S. 2647-2655 
    ISSN: 0887-6266
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Physics
    Notes: This article describes dielectric properties of complex Zn(II) salts of ethylene-methacrylic acid copolymer (5.4 mol% methacrylic acid) with n-hexylamine. In all samples, the β′ relaxation near 340 K and γ relaxation near 170 K are observed. These are assigned, respectively, to micro-Brownian molecular motion of long segments above Tg and to local molecular motion of short segments below Tg. The dielectric results indicate that ionic clusters are not formed in these systems.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Weinheim : Wiley-Blackwell
    Macromolecular Chemistry and Physics 196 (1995), S. 3919-3927 
    ISSN: 1022-1352
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Physics
    Notes: A spin-probing technique was first applied to a study of a non-magnetic ionomer, polyethylene/methacrylic acid copolymer neutralized with Zn2+ (E-MAA-Zn); 2 mol-% Cu2+ ions were incorporated in replacement of Zn2+, and its ESR spectra were observed in detail at various temperatures in order to obtain physico-chemical properties of E-MAA-Zn, especially its structural changes. We found no significant influence of the 2 mol-% Cu2+ -incorporation upon the properties of the Zn2+ ionomer by differential scanning calorimetry (DSC), which showed two endothermic peaks, (1) an irreversible one at lower temperature which is associated with the ionic aggregate phase in the ionomer, (2) a reversible one at higher temperature with considerable thermal hysteresis which is due to melting of the polymer main chains. ESR hyperfine coupling constants (A∥ and A⊥) of Cu2+ showed no sign of structural changes of the polymer around the phase-transition temperatures, whereas ESR g-values (g∥ and g⊥) of Cu2+ proved the onset of the softening of the polymers to be attributable to polymer melting. The latter slope-changes in the temperature dependences were reversible, although with considerable thermal hysteresis. These findings are compatible with the DSC data. As for the irreversibility regarding the endotherm at lower temperature, broad ESR hyperfine components recovered gradually, indicating an order-disorder nature of the ionic aggregate phase transition.
    Additional Material: 8 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1022-1352
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Physics
    Notes: Two new ethylene ionomers were synthesized, poly[ethylene-co-(5.4-mol-% 2-(4-carboxyphenoxy)ethyl methacrylate)] partially neutralized with Zn(II) (EMAA-BZnX), and poly[ethylene-co-(5.4 mol-% 2-(3-carboxypyridin-6-yloxy)ethyl methacrylate)] (EMAA-N) and its hydrochloride (EMAA-NHCl). Differential scanning calorimetric (DSC), X-ray diffraction, and dielectric and dynamic mechanical relaxation studies were made for the two ionomers to investigate the formation and structure of ionic aggregates. In EMAA-BZnX, DSC, dielectric and dynamic mechanical data suggest the formation of ionic aggregates in the neutralization range above 40%; X-ray diffraction data, however, did not show any ionic peak, while the ionic groups were not aggregated at all in EMAA-NHCl. From these results, the ion-aggregation in ionomers is discussed with respect to chemical structure and the nature of ionic groups.
    Additional Material: 11 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Basel : Wiley-Blackwell
    Die Makromolekulare Chemie, Rapid Communications 10 (1989), S. 109-112 
    ISSN: 0173-2803
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Physics
    Additional Material: 3 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    New York : Wiley-Blackwell
    Journal of Polymer Science: Polymer Letters Edition 14 (1976), S. 23-27 
    ISSN: 0360-6384
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Additional Material: 3 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Applied Polymer Science 42 (1991), S. 351-362 
    ISSN: 0021-8995
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: Thermal properties by DSC, stiffness, melt viscosity, tensile properties, and dynamic mechanical properties were measured for the Na+, K+, Mg2+, Zn2+, Cu2+, Mn2+, and Co2+ salts of poly(ethylene-co-methacrylic acid) (EMAA). The changes in the structure and properties with increasing neutralization are larger in the alkaline and alkaline earth metal salts than in the transition metal salts. The stiffness shows a maximum at 33% neutralization in both the alkaline and alkaline earth metal salts, while no maxima are found up to 60% neutralization in the transition metal salts. The microphase separation of salt group aggregates is observed in both the alkaline and alkaline earth metal salts, but is not seen in the transition metal salts. These differences were attributed to both the stronger ionic interactions and the larger number of carboxyl groups associated with the alkaline and alkaline earth metal salts in the ordered structure of ionic salt groups (ionic crystallites). The mechanical properties measured at low strain, such as stiffness and yield stress, strongly depend on the degree of the crystalline order of the ionic crystallites. The high-strain properties, such as tensile strength and elongation at break, depend on the strength of the ionic interactions and the valence of the cation.
    Additional Material: 13 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    ISSN: 0021-8995
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: The complex Zn(II) salts of ethylene-methacrylic acid copolymer (EMAA) were synthesized by using various organic amines from monoamines to polyamines, from primary amines to tertiary amines, and from molecular amines to polymer amines. Thermal analyses by differential scanning calorimetry (DSC), and the measurement of stiffness, melt flow rate (MFR), and dielectric properties were employed for the complex salts. It was found that the valence, strength of base, rigidity and flexibility, and bulkiness of the organic amines affect the degree of crystalline order of the ionic crystallites, which governs the stiffness of the complex ion ionomers. The stiffness is higher for the complex salts which form the higher orderliness in the ionic aggregates. The organic amines with two or more primary aliphatic amino groups and higher boiling temperatures from more rigid ionic crystallites in the complex ion ionomers leading to the enhanced modulus. Monoamines or polyamines with amino groups attached to flexible chains such as polyether and polysiloxane scarcely develop ionic crystallites and preferentially solvate the amorphous region including ionic groups leading to the decreased modulus. These results provide us with the fundamental information to control the modulus of ionomers.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    New York : Wiley-Blackwell
    Die Makromolekulare Chemie 189 (1988), S. 939-950 
    ISSN: 0025-116X
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Physics
    Notes: Electron spin resonance (ESR) spectra of styrene/methacrylic acid copolymers neutralized with Cu(II) were observed at room temperature. Three magnetic species were detected; isolated Cu2+, Cu2+-Cu2+ pairs of Cu(II) acetate monohydrate type and anhydrous Cu(II) formate type. One of the absorption patterns due to the Cu2+-Cu2+ pair is the same as that of Cu(II) acetate monohydrate except linewidth. ESR data from the other species are summarized. ESR parameter, effect of the acid and Cu(II) contents, and spectral changes depending on sample preparation procedures or temperatures are discussed.
    Additional Material: 8 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    New York : Wiley-Blackwell
    Journal of Polymer Science: Polymer Physics Edition 12 (1974), S. 1875-1887 
    ISSN: 0098-1273
    Keywords: Physics ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Physics
    Notes: Dielectric properties of poly(vinylidene fluoride) have been studied in the frequency range 20 Hz to 1 MHz and between 100 and 220°C, during heating and cooling. The dielectric constant and loss change abruptly at the temperature Tm corresponding to the melting point. At lower frequencies, two types of ionic conductin are observed. One appears below Tm and is attributed to interfacial polarization. The other occurs above Tm and is related to electrode polarization. These results suggest that a crystalline polymer is a heterogeneous medium for ionic transport, while the melt is a homogeneous medium. From these results, the nature of ac ionic conduction in crystalline polymers is discussed. At high frequency, the α relaxation is observed below Tm. It is due to the molecular motion in the crystalline region and disappears at Tm.
    Additional Material: 13 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    New York : Wiley-Blackwell
    Die Makromolekulare Chemie 179 (1978), S. 2799-2802 
    ISSN: 0025-116X
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Physics
    Additional Material: 2 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...