ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 0022-3832
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Physics
    Notes: Cyclopentadiene can be catalytically converted into a deep red polycyclopentadienetrichloroacetic acid adduct (I). Oxidation and hydrogenation experiments show that each repeating unit of (I) contains one double bond. Other observations, including spectroscopic and electrochemical measurements indicate that these double bonds are conjugated, and that this polymerization involves the migration of hydrogen atoms. The kinetics of the formation of (I) are investigated and some results of these measurements, together with those pertaining to the alkaline hydrolysis of (I), make it probable that the initiation step is in acid-catalyzed esterification of the diene and that the final polymer is an ester. Colloid chemical properties of (I) are described.
    Additional Material: 1 Tab.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Polymer International 33 (1994), S. 419-424 
    ISSN: 0959-8103
    Keywords: trimethylsilylation ; micas ; phase transfer agent ; polyorganosiloxane ; Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: The Lentz trimethylsilylation technique has been applied to study four micas: biotite, phlogopite, muscovite and suzorite. The Lentz derivitisation technique is shown to be independent of the exact amount of phase transfer agent (propan-2-ol or ethanol) present in the trimethylsilylation of the micas as long as the ratio of mineral to hexamethyldisiloxane is held constant. The polyorganosiloxane product distribution is shown to be largely dependent on the amount and distribution of Al3+ present in the tetrahedral layers of the micas.
    Additional Material: 1 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    New York : Wiley-Blackwell
    Journal of Polymer Science Part A-2: Polymer Physics 7 (1969), S. 537-549 
    ISSN: 0449-2978
    Keywords: Physics ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Physics
    Notes: Thermogravimetric analyses (TGA) of catalyst-free polydimethylsiloxanes (PDMS) have been carried out in controlled atmospheres and a kinetic analysis of the results has enabled the various decomposition processes to be separated and identified. The calculated activation energy for thermal depolymerization is 42 ± 3 kcal/mole, while thermo-oxidation has an apparent activation energy of 30 ± 2 kcal/mole. Quantitative analyses of the major degradation products and molecular weight distribution studies of the residues from degradation studies under isothermal conditions have shown that in vacuo, PDMS fractions depolymerize to cyclic dimethylsiloxanes and low molecular weight linear residues by a randomly initiated mechanism which, it is postulated, involves the formation of an intramolecular, cyclic, four-centered transition state followed by siloxane bond rearrangement. This mechanism is a basic property of linear PDMS fractions and is independent of molecular weight. Molecular weight distribution (MWD) changes observed from further isothermal investigations on hydroxy endblocked PDMS fractions, have shown the presence of a chain-lengthening process in vacuo below the depolymerization temperature. This process, with an apparent activation energy of 8.6 ± 1 kcal/mole, is attributed to the intermolecular condensation of terminal hydroxyl groups.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    New York : Wiley-Blackwell
    Journal of Polymer Science Part A-2: Polymer Physics 7 (1969), S. 297-307 
    ISSN: 0449-2978
    Keywords: Physics ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Physics
    Notes: The molecular weight distributions of three polydimethylsiloxanes (PDMS) have been determined by gel-permeation chromatography (GPC), by gas-liquid chromatography (GLC), and by precipitation fractionation. The GPC data are greatly improved by correction for band spreading. For a high molecular weight polymer the corrected distribution agrees closely with the theoretical molecular weight distribution calculated from polymerization kinetics.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    New York : Wiley-Blackwell
    Journal of Polymer Science Part A-2: Polymer Physics 8 (1970), S. 1823-1830 
    ISSN: 0449-2978
    Keywords: Physics ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Physics
    Notes: Thermogravimetric (TG) investigations of various substituted polysiloxanes of the type \documentclass{article}\pagestyle{empty}\begin{document}$ \rlap{--} ({\rm R}_1 {\rm R}_2 {\rm SiO\rlap{--} )}_n $\end{document} have been carried out in vacuo and the activation energies for the depolymerization processes calculated from the resulting thermograms. (R1 and R2 are methyl, ethyl, n-propyl, trifluoropropyl, or phenyl.) It is postulated that the activation energy is mainly a function of the inductive effect of the substituent group and that electron-withdrawing groups attached to silicon increase the activation energy, whereas electron-donating groups decrease it. A linear relation is found between the Taft constant σ* for the substituent on silicon and the calculated activation energy for depolymerization. Product analysis results from isothermal degradations indicate that the degradation mechanism in a silmethylene siloxane polymer and a silethylene-siloxane polymer is very similar to that in polydimethylsiloxanes (PDMS). For the \documentclass{article}\pagestyle{empty}\begin{document}$ \rlap{--} ({\rm R}_1 {\rm R}_2 {\rm SiO\rlap{--} )}_n $\end{document} polymers, the amount of cyclotrisiloxane in the degradation products increases with the size of the substituent on silicon, and it is postulated that the rate of depolymerization is mainly influenced by short-range steric interactions between the substituents on the silicon atoms of the siloxane chain.
    Additional Material: 1 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    ISSN: 0006-3525
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: Dissolution of α-chymotrypsin in nonpolar organic solvents can be achieved using hydrophobic ion pairing, whereby the polar counterions are replaced by a stoichiometric number of detergent molecules. Using Aerosol OT[AOT, sodium bis(2-octyl)sulfosuccinate], it is possible to partition significant amounts of the enzyme into alkanes and chlorocarbons. Apparent solubility in isooctane is greater than 1 mg/mL (80 μM). Necessary conditions for achieving effective partitioning of α-chymotrypsin into these solvents are described. Using CD spectroscopy, it can be shown that the AOT-α-chymotrypsin (CMT) complex retains its native secondary and tertiary structure when dissolved in alkanes, and that the globular structure is stable to more than 100°C. In contrast, α-chymotrypsin unfolds at 54°C in aqueous solution. The relative solubility of the AOT-CMT complex in a variety of alkanes and chlorocarbons is also reported. The native structure of α-chymotrypsin is maintained in carbon tetrachloride, but not in methylene chloride or chloroform. © 1995 John Wiley & Sons, Inc.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...