ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Weinheim : Wiley-Blackwell
    Macromolecular Rapid Communications 16 (1995), S. 527-531 
    ISSN: 1022-1336
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Physics
    Notes: The iodate pH oscillator, which oscillates between pH 6.5 and 4.0, is reproducible in a semibatch reactor. pH oscillations of similar period and amplitude were observed when poly(2-acrylamido-2-methyl-1-propanesulfonic acid) was substituted for sulfuric acid. Therefore, a polymer may be used as an alternative reagent, where the polymer actively participates in the reaction instead of serving as an inert reaction medium.
    Additional Material: 2 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-06-28
    Description: The effects of the permanent tidal effects of the Sun and Moon with specific applications to satellite altimeter data reduction are reviewed in the context of a consistent definition of geoid undulations. Three situations are applicable not only for altimeter reduction and geoid definition, but also for the second degree zonal harmonic of the geopotential and the equatorial radius. A recommendation is made that sea surface heights and geoid undulations placed on the Topex/Poseidon geophysical data record should be referred to the mean Earth case (i.e., with the permanent effects of the Sun and Moon included). Numerical constants for a number of parameters, including a flattening and geoid geopotential, are included.
    Keywords: GEOPHYSICS
    Type: NASA-TM-100775 , NAS 1.15:100775 , REPT-91B00049
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-06-28
    Description: We have solved for the potential flow downstream of the terminal shock of the solar wind in the limit of small departures from a spherical shock due to a latitudinal ram pressure variation in the supersonic solar wind. The solution connects anisotropic streamlines at the shock to uniform streamlines down the heliotail because we use a non-slip boundary condition on the heliopause at large radii. The rotational velocity about the heliotail in the near-field solution decays as the fourth power of distance from the shock. The polar divergence of the streamlines will have consequences for the previously discussed magnetic pressure ridge that may build-up just inside the heliopause.
    Keywords: GEOPHYSICS
    Type: NASA-TM-110493 , NAS 1.15:110493
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-08-28
    Description: A 2D model of the plasmasphere has been developed to study the temporal evolution of plasma density in the equatorial plane of the magnetosphere. This model includes the supply and loss of hydrogen ions due to ionosphere-magnetosphere coupling as well as the effects of E x B convection. A parametric model describing the required coupling fluxes has been developed which utilizes empirical models of the neutral atmosphere, the ionosphere and the saturated plasmasphere. The plasmaspheric model has been used to examine the time it takes for the plasmasphere to refill after it has been depleted by a magnetic storm. The time it takes for the plasmasphere to reach 90 percent of its equilibrium level ranges from 3 days at L = 3 during solar minimum to as high as 100 days at L = 5 during solar maximum. Refilling is also dependent on the month of the year, with refilling requiring a longer period of time at solar maximum during June than during December for L greater than 3.2.
    Keywords: GEOPHYSICS
    Type: Planetary and Space Science (ISSN 0032-0633); 41; 1; p. 35-43.
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    New York : Wiley-Blackwell
    Biopolymers 14 (1975), S. 2625-2637 
    ISSN: 0006-3525
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: In order to obtain a molecular picture of the A and B forms of a DNA subunit, potential energy calculations have been made for dGpdC with C(3′)-endo and C(2′)-endo [or C(3′)-exo] sugar puckerings. These are compared with results for GpC. The global minima for dGpdC and GpC are almost identical. They are like A-form duplex DNA and RNA, respectively, with bases anti, the ω′, ω angle pair near 300°, 280°, and sugar pucker C(3′)-endo. For dGpdC, a B-form helical conformer, with sugar pucker C(2′)-endo and ω′ = 257°, ω = 298°, is found only 0.4 kcal/mol above the global minimum. A second low-energy conformation (2.3 kcal/mol) has ω′ = 263°, ω = 158° and ψ near 180°. This has dihedral angles like the original Watson-Crick model of the double helix. In contrast, for GpC, the C(2′)-endo B form is 6.9 kcal/mol above the global minimum. These theoretical results are consistent with experimental studies on DNA and RNA fibers. DNA fibers exist in both A and B forms, while RNA fibers generally assume only the A form. A low-energy conformation unlike the A or B forms was found for both dGpdC and GpC when the sugars were C(3′)-endo. This conformation - ω′,ω near 20°,80° - was not observed for C(2′)-endo dGpdC. Energy surface maps in the ω′,ω plane showed that C(2′)-endo dGpdC has one low-energy valley. It is in the B-form helical region (ω′ ∼ 260°, ω ∼ 300). When the sugar pucker is C(3′)-endo, dGpdC has two low-energy regions: the A-form helical region and the region with the minimum at ω′ = 16°, ω = 85°.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    New York : Wiley-Blackwell
    Biopolymers 15 (1976), S. 1951-1964 
    ISSN: 0006-3525
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: Potential energy calculations were employed to examine the effect of ribose 2′-O-methylation on the conformation of GpC. Minimum energy conformations and allowed conformational regions were calculated for 2′MeGpC and Gp2′MeC. The two lowest energy conformations of 2′MeGpC and Gp2′MeC are similar to those of GpC itself. The helical RNA conformation (sugar pucker-C(3′)-endo, ω′ and ω,g-g-, bases-anti) is the global minimum, and a helix-reversing conformation with ω′, ω in the vicinity of 20°, 80° is next in energy. However, subtle differences between the three molecules are noted. When the substitution is on the 5′ ribose (Gp2′MeC), the energy of the helical conformation is less than that of GpC, due to favorable interactions of the added methyl group. When the substitution is at the 3′ ribose (2′MeGpC) these stabilizing interactions are outweighed by steric restrictions, and the helical conformation is of higher energy than for GpC. Furthermore, the statistical weight of the 2′MeGpC g- g- helical region is substantially less than the corresponding weight for Gp2′MeC. In addition, 2′MeGpC′s methoxy group is conformationally restricted to a narrow range centered at 76°. This group has a broadly allowed region between 50 and 175° in Gp2′MeC. These differences occur because the appended methyl group in 2′MeGpC is located in the interior of the helix cylinder, as it would be in polynucleotide, while it hangs unimpeded in Gp2′MeC. These findings suggest that 2′-O-methylation has both stabilizing and destabilizing influences on the helical conformation of RNA. For 2′MeGpC the destabilizing steric hindrance imposed by the nature of the guanine base dominates.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    ISSN: 0006-3525
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: Classical potential energy calculations have been made for the ribodinucleoside monophosphates ApA, CpC, GpG, and UpU. Van der Waal's, electrostatic, and torsional contributions to the energy were calculated, and the energy was minimized with the seven backbone conformational angles as simultaneously variable parameters. At the global minimum, ApA and CpC have conformations like double helical RNA: the angles ω′ and ω are g-g-, the sugar pucker is C3′-endo, and the bases are anti. GpG and UpU, on the other hand, have the ω′,ω angle pair g-t at the global minimum, and for GpG the bases are syn. Energy contour maps for ω′ and ω show two broad, low energy regions for ApA, CpC, and UpU: one is g-g-, and the second encompasses g-t and g+g+ within a single lowenergy contour. The two regions are connected by a path at 10-13 kcal./mole. For GpG, with bases syn, however, only a small low-energy region at g-t is found. The helical ‘A’ RNA conformation is 8.5 kcal/mole higher for this molecule. Thus, the base composition is shown to influence the conformations adopted by dinucleoside phosphates. Comparison of calculations with experimetal data, where available, show good agreement.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    New York : Wiley-Blackwell
    Biopolymers 17 (1978), S. 785-794 
    ISSN: 0006-3525
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: We have made quantitative estimates of some of the energetic factors to be considered in packaging of double-stranded DNA in virus particles. Numerical calculations were made using parameters appropriate for T4 bacteriophage. The unfavorable factors, and the Gibbs free energies per mole virus at 20°C associated with them, are bending, 1.5 × 103 kcal/mol; conformational restriction upon condensation, 5.1 × 102 kcal/mol; polyelectrolyte repulsion, 2.1 × 105kcal/mol; and melting or kinking, 6.9 × 103 kcal/mol. These must be counterbalanced in the assembled phage by noncovalent bonding interactions between protein subunits in the phage-head shell; by interactions between the DNA and polyvalent cations, especially putrescine and spermidine; nad perhaps by repulsive excluded volume and electrostatic interaction between the DNA and acidic polypeptides. Indeed, a rough estimate of the standard free energey of interaction between T4 DNA and the putrescine and spermidine contained in the head is --2.1 × 105 kcal/mol. In the absence of the other two sources of stabilization, each head protein subunit must contribute about 210 kcal/mol of binding energy.
    Additional Material: 1 Tab.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    New York : Wiley-Blackwell
    Biopolymers 36 (1995), S. 103-108 
    ISSN: 0006-3525
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: The diffuse x-ray diffraction patterns of agarose gels are compatible with both the “chicken-wire” gel model consisting of associated double-helix chain conformations and a network of more extended, but unentwined helices. Preference f or the double-helix model has largely rested on an early interpretation of optical rotation data. Applying a recent, less empirical, chiroptical model of saccharide rotation, we confirm the earlier analysis by concluding that the rotation observed in the gel can be satisfactorily accounted for in terms of wide-diameter agarose helices, capable of intertwining. In addition, we have found that the extended helices found in dried sols do not yield the observed gel rotations. © 1995 John Wiley & Sons, Inc.
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    New York : Wiley-Blackwell
    Biopolymers 15 (1976), S. 1437-1437 
    ISSN: 0006-3525
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...