ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Polymer and Materials Science  (12)
  • Earth Resources and Remote Sensing; Meteorology and Climatology  (3)
  • 1
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    Polymers for Advanced Technologies 3 (1992), S. 345-350 
    ISSN: 1042-7147
    Keywords: Transplantation ; Immunosuppression ; Controlled release drugs ; Steroids ; Cyclosporine ; Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Systemic immunosuppression frequently results in severe side effects. To evaluate a method of limiting the adverse effects of immunosuppression, we implanted controlled release matrices containing cyclosporine-A (Cy) embedded (0.2 or 1 mg/kg/day released), steroid embedded (2%, 0.2% and 0.02% dexamethasone, Dex) or both (Cy 0.2 mg and Dex 0.2%) locally around the transplanted heart at the time of rat heterotopic (neck) heart transplants. Controls received empty (non-drug) matrix implants. To elucidate a local effect, additional groups received Cy (0.2 mg) or Dex (0.2%) matrix implanted in a subdermal distal leg pouch at the time of heart transplant, without a local neck implant. Rejection was determined by the lack of transplanted heart contractions. Recipient animals received no other form of immunosuppression.The Cy (0.2 mg) animals had whole-blood Cy levels monitored for 6 weeks following transplantation. Cy levels peaked at 7-10 days after transplant (119 ± 26 ng/ml) and decayed to 〈50 ng/ml by day 42. At no time did whole-blood Cy levels reach clinically significant levels. Additional animals had whole-blood, heart and kidney Cy levels measured at day 6 post-transplant. Both doses of local Cy demonstrated good survival benefit and were well absorbed locally, resulting in high Cy levels in heart tissue (〉9,000 ng/mg). Furthermore, while low-dose Cy (0.2 mg) demonstrated significant survival benefit, these animals had clinically negligible blood Cy levels on day 6 (〈100 ng/ml) and very low kidney Cy levels. Interestingly, the lowest dose of Dex demonstrated no survival benefit, while the mid- and high-Dex doses demonstrated good survival benefit: however, the high-Dex dose had poor wound healing. Cy and Dex combination did not increase efficacy, perhaps due to release problems from physicochemical interactions.Local immunosuppression with a controlled release matrix resulted in a significant survival advantage and was effective in delaying rejection. This approach may prove advantageous clinically, in extending transplantation and lessening immunosuppression side effects.
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Applied Biomaterials 2 (1991), S. 211-212 
    ISSN: 1045-4861
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine , Technology
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Applied Biomaterials 5 (1994), S. 65-77 
    ISSN: 1045-4861
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine , Technology
    Notes: Cardiovascular implant mineralization involving bioprosthetic materials, such as glutaraldehyde cross linked porcine aortic valves or synthetic materials such as polyurethanes, is an important problem that frequently leads to clinical failure of bioprosthetic heart valves, and complicates long-term experimental artificial heart device implants. Novel, proprietary, calcification resistant polyetherurethanes (PEU) as an alternative to bioprosthetic materials were the subject of these investigations. A series of PEU was derivatized through a proprietary reaction mechanism to achieve covalent binding of 100 to 500 nM/mg of bisphosphonate (2-hydroxyethane bisphosphonic acid, HEBP). The stability of HEBP (physically dispersed or covalently bound) verified by studying the release kinetics in physiological buffer (pH 7.4) at 37°C, demonstrated the covalent binding reaction to be stable, efficient, and permanent. Surface (FTIR-ATR, ESCA, SEM/EDX) and bulk (solubility, GPC) properties demonstrated that the covalent binding of HEBP occurs in the soft segment of the PEU, reduces surface degradation, and does not affect the original material properties of the PEU (prior to derivatization). In vitro calcium diffusion of the derivatized PEU showed a decrease in calcium permeation as the concentration of HEBP covalent binding was increased. In vivo properties of underivatized and derivatized PEU (containing 100 nM of covalently bound HEBP) were studied with rat subdermal implants for 60 days. Explants demonstrated calcification resistance due to the covalently bound HEBP without any side effects. It is concluded that a PEU containing HEBP might serve as a calcification resistant candidate material for the fabrication of a heart valve prosthesis and other implantable devices. © 1994 John Wiley & Sons, Inc.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Hoboken, NJ : Wiley-Blackwell
    Journal of Biomedical Materials Research 28 (1994), S. 1485-1495 
    ISSN: 0021-9304
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine , Technology
    Notes: Postimplant calcific degeneration is a frequent cause of clinical failures of glutaraldehyde cross-linked porcine bioprosthetic heart valves (BPHV). It was demonstrated previously that 2-amino oleic acid (AOA) used as a bioprosthesis treatment was highly effective in mitigating aortic valve cusp but not aortic wall calcification. Our main objective was to study the efficacy of various AOA exposure conditions for inhibiting calcification of both cusps and aortic wall tissues using rat subdermal implants. BPHV tissues were treated with a saturated AOA solution for different time intervals before experimentation. Aortic wall AOA levels were consistently lower than that of the cusps after the same exposure times. The diffusion of calcium ion across both cusp and aortic wall tissues was evaluated, and the results demonstrated that there was an AOA exposure time-dependent retardation of calcium ion penetration for cusp but not aortic wall. An 8-month extraction study was performed to determine the stability of AOA binding. When Tween 80 was used as an extraction medium, cusp and aortic wall retained 12.9 and 48.7%, respectively, of their initial AOA levels. AOA inhibition of calcification in rat subdermal implants (60 days) was found to be exposure time-dependent with maximum treatment time (120 h), resulting in the lowest calcium levels (20.1 ± 10.3 and 71.4 ± 5.4 μg/mg of cusp and aortic wall, respectively) as compared with control (219.1 ± 6.8 and 104.9 ± 8.5 μg/mg of cusp and aortic wall respectively). The significance of AOA binding on BPHV tissue was determined by either blocking or reducing BPHV's (cusp and aortic wall) free aldehyde residues with lysine or NaBH4, respectively, before AOA treatment. For aortic cusps, the AOA contents after 72 h were 98.3 ± 2.7, 34.2 ± 3.6, and 54.1 ± 3.0 nM/mg of tissue for AOA (control), lysine-pretreated (plus AOA) and NaBH4-pretreated (plus AOA) tissues, respectively. However, their calcium levels after 60 days of rat subdermal implant were all comparable (i. e., 48.1 ± 6.2, 38.2 ± 9.1, and 47.0 ± 15.0 μg calcium per mg of tissue). Similar results were observed on BPHV aortic wall. It can thus be concluded that AOA inhibition of BPHV calcification is exposure time-dependent, but the efficacy of AOA for aortic wall is less than that noted for aortic cusps, perhaps because of lower AOA bindings and differences in calcium diffusion kinetics. © 1994 John Wiley & Sons, Inc.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Hoboken, NJ : Wiley-Blackwell
    Journal of Biomedical Materials Research 31 (1996), S. 201-207 
    ISSN: 0021-9304
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine , Technology
    Notes: Calcification complicates the use of the polymer polyurethane in cardiovascular implants. To date only costly experimental circulatory animal models have been useful for investigating this disease process. In this paper we report that polyurethane calcification in rat subdermal implants is enhanced by overdosing with a vitamin-D analog. The calcification-prone state, known as calciphylaxis, was induced in 4-week old rats by oral administration of a vitamin-D analog, dihydrotachysterol. We studied two commercially available polyurethanes (Biomer® and Mitrathane®) and two proprietary polyurethanes (PEU-2000 and PEU-100). PEU-100 is unique because it is derivatized with ethanehydroxy-bisphosphonate (EHBP) for calcification resistance. Polyurethane calcium and phosphate levels and morphological changes due to calciphylaxis were compared with those of control rat subdermal explants in 60-day studies. Increased polyurethane mineralization was observed due to calciphylaxis with 60-day rat subdermal explants of Biomer®, Mitrathane®, and PEU-2000 (calcium levels, respectively, 4.13 ± 0.56, 18.61 ± 2.73, and 3.37 ± 0.22 μg/mg, mean ± standard error) as compared to control explants (calcium levels, respectively, 1.22 ± 0.1, 12.57 ± 0.86, and 0.20 ± 0.86 μg/mg). The study also demonstrated that with 60-day implants calciphylaxis had no side effects on somatic growth and serum calcium levels. Explant surface morphology of these polyurethane explants examined by scanning electron microscopy, back scattering electron imaging coupled with energy dispersive X-ray spectroscopy, and light microscopy demonstrated the presence of predominantly surface-oriented calcification. PEU-100, derivatized with 100 n.moles/mg of EHBP, resisted calcification with explant calcium levels 0.51 ± 0.01 (calciphylaxis) and 0.38 ± 0.01 (control) μg/mg. It is concluded that calciphylaxis enhances superficial polyurethane calcification in rat subdermal implants and that an EHBP-modified polyurethane resists calcification despite calciphylaxis. Rat subdermal implants using calciphylaxis may be generally useful for evaluating the calcification potential of various biomedical polymers. © 1996 John Wiley & Sons, Inc.
    Additional Material: 2 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Hoboken, NJ : Wiley-Blackwell
    Journal of Biomedical Materials Research 34 (1997), S. 411-415 
    ISSN: 0021-9304
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine , Technology
    Notes: In this study, we examined separately calcification of cusps (C) and associated aortic wall (AW) of 38 (13 aortic and 25 mitral) porcine bioprosthetic heart valves explanted from 37 patients (ages 25-80 years, mean 59) for structural dysfunction, following 54-210 months (mean 125 months aortic, 119 months mitral). Valves were sectioned into C and corresponding AW components; calcification was assessed by atomic absorption spectroscopy for calcium and histologic examination. Overall, AW calcification was half that of C (33.3 ± 5.4 vs. 65.9 ± 6.3 μg/mg, mean ± standard error of the mean respectively, p = 0.002). Correlation of calcification in individual C/AW pairs was weak (r2 = 0.34). Calcification in C was nodular, largely in the valve fibrosa, but AW calcification predominated in the cells between elastic lamellae; large nodules were sparse. We conclude that since AW calcification in these failed porcine valves was neither prominent nor clinically significant, this process should rarely if ever be a limiting factor in the function of stented porcine valves, and that development of anticalcification therapies directed toward the AW of stented valves should be of low priority. However, in stent-free valves, the AW is not covered by prosthetic material, and the level of calcification could be greater and more likely to cause clinical problems through stiffening, embolism, and/or protrusion into the lumen of calcific masses. © 1997 John Wiley & Sons, Inc.
    Additional Material: 2 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    ISSN: 0021-9304
    Keywords: bioprostheses ; type I collagen ; infrared spectroscopy ; Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine , Technology
    Notes: Clinical usage of bioprosthetic heart valves (BPHVs) fabricated from glutaraldehyde-pretreated porcine aortic valves is restricted due to calcification-related failure. We previously reported a highly efficacious ethanol pretreatment of BPHVs for the prevention of cuspal calcification. The aim of the present study is to extend our understanding of the material changes brought about by ethanol and the relationship of these material effects to the ethanol pretreatment anticalcification mechanism. Glutaraldehyde-crosslinked porcine aortic valve cusps (control and ethanol-pretreated) were studied for the effects of ethanol on tissue water content and for spin-lattice relaxation times (T1) using solid state proton NMR. Cusp samples were studied for protein conformational changes due to ethanol by ATR-FTIR spectroscopy. The changes in cuspal tissue-cholesterol (in vitro) interactions also were studied. Cusp material stability was assessed in terms of residual glutaraldehyde content and collagenase degradation. Water content of the cusp samples was decreased significantly due to ethanol pretreatment. The cuspal collagen conformational changes (per infrared spectroscopy) brought about by ethanol pretreatment were persistent even after rat subdermal implantation of cusp samples for 7 days. In vitro cholesterol uptake by cusps was greatly reduced as a result of ethanol pretreatment. Ethanol pretreatment of cusps also resulted in increased resistance to collagenase digestion. Cuspal glutaraldehyde content was not changed by ethanol pretreatment. We conclude that ethanol pretreatment of bioprosthetic heart valve cusps causes multi-component effects on the tissue/material and macromolecular characteristics, which partly may explain the ethanol-pretreatment anticalcification mechanism. © 1998 John Wiley & Sons, Inc. J Biomed Mater Res, 40, 577-585, 1998.
    Additional Material: 3 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    ISSN: 0021-9304
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine , Technology
    Notes: The effectiveness of ethanol pretreatment on preventing calcification of glutaraldehyde-fixed porcine aortic bioprosthetic heart valve (BPHV) cusps was previously demonstrated, and the mechanism of action of ethanol was attributed in part to both lipid removal and a specific collagen conformational change. In the present work, the effect of ethanol pretreatment on BPHV aortic wall calcification was investigated using both rat subdermal and sheep circulatory implants. Ethanol pretreatment significantly inhibited calcification of BPHV aortic wall, but with less than complete inhibition. The maximum inhibition of calcification of BPHV aortic wall was achieved using an 80% ethanol pretreatment; calcium levels were 71.80 ± 8.45 μg/mg with 80% ethanol pretreatment compared to the control calcium level of 129.90 ± 7.24 μg/mg (p = 0.001). Increasing the duration of ethanol exposure did not significantly improve the inhibitory effect of ethanol on aortic wall calcification. In the sheep circulatory implants, ethanol pretreatment partly prevented BPHV aortic wall calcification with a calcium level of 28.02 ± 4.42 μg/mg compared to the control calcium level of 56.35 ± 6.14 μg/mg (p = 0.004). Infrared spectroscopy (ATR-FTIR) studies of ethanol-pretreated BPHV aortic wall (vs. control) demonstrated a significant change in protein structure due to ethanol pretreatment. The water content of the aortic wall tissue and the spin-lattice relaxation times (T1) as assessed by proton nuclear magnetic resonance spectroscopy did not change significantly owing to ethanol pretreatment. The optimum condition of 80% ethanol pretreatment almost completely extracted both phospholipids and cholesterol from the aortic wall; despite this, significant calcification occurred. In conclusion, these results clearly demonstrate that ethanol pretreatment is significantly but only partially effective for inhibition of calcification of BPHV aortic wall and this effect may be due in part to lipid extraction and protein structure changes caused by ethanol. It is hypothesized that ethanol pretreatment may be of benefit for preventing bioprosthetic aortic wall calcification only in synergistic combination with another agent. © 1998 John Wiley & Sons, Inc. J. Biomed Mater Res, 42, 30-37, 1998.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    Hoboken, NJ : Wiley-Blackwell
    Journal of Biomedical Materials Research 29 (1995), S. 217-226 
    ISSN: 0021-9304
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine , Technology
    Notes: Experiments were carried out to investigate rat aortic allograft calcification using valved abdominal aortic allografts. Results indicated that this was a potentially useful model for investigating fresh allograft calcification, as well as mineralization of glutaraldehyde-crosslinked valved allografts. Valve cusp results, however, were not comparable to those noted in large animal or human studies, while aortic wall calcification was more comparable. Calcification inhibitor investigations demonstrated that nearly complete inhibition of the calcification of the aortic wall of glutaraldehyde-crosslinked allografts was achieved using a number of individual inhibitors, including controlled release diphosphonates, and pretreatment with either ferric chloride or aluminum chloride. However, aminopropanehydroxydiphosphonate pretreatment was not efficacious, and sodium dodecyl sulfate pretreatment was only partially effective for inhibiting the aortic wall calcification in the glutaraldehyde-crosslinked allografts. It is concluded that valved aortic allografts in rats provide a useful model for investigating aortic wall (but not valve cusp) calcification and its inhibition. © 1995 John Wiley & Sons, Inc.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    ISSN: 0021-9304
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine , Technology
    Notes: The principal cause of the clinical failure of bioprosthetic heart valves fabricated from glutaraldehyde-pretreated porcine aortic valves is calcification. Other prostheses composed of tissue-derived and polymeric biomaterials also are complicated by deposition of mineral. We have previously demonstrated that: (a) Failure due to calcification of clinical bioprosthetic valves can be simulated by either a large animal circulatory model or subdermal implants in rodents. (b) Calcification of bioprosthetic tissue has complex host, implant, and mechanical determinants. (c) The initial calcification event in the rat subdermal model is the mineral deposition in devitalized cells intrinsic to the bioprosthetic tissue within 48 to 72 h, followed later by collagen mineralization. (d) Initiation of bioprosthetic tissue mineralization, like that of physiological bone formation, has “matrix vesicles” as early nucleation sites. (e) Alkaline phosphatase (AP), an enzyme also associated with matrix vesicles involved in bone mineral nucleation, is present in both fresh and fixed bioprosthetic tissue at sites of initial mineralization. (f) Certain inhibitors of bioprosthetic tissue calcification (e.g., Al3+, Fe3+) are localized to the sites at which alkaline phosphatase is present. On the basis of these results, we hypothesize that alkaline phosphatase is a key element in the pathogenesis of mineralization of bioprosthetic tissue. In the present studies, we focused on the relationship of AP to early events in calcification, and the inhibition of both calcification and AP activity by FeCl3 and AlCl3 preincubations. Subdermal implants of glutaraldehyde pretreated bovine pericardium (GPBP) were done in 3-week-old rats. AP was characterized by enzymatic hydrolysis of paranitrophenyl phosphate (pnpp), and by histochemical studies. Calcification was evaluated chemically (by atomic adsorption spectroscopy) and morphologically (by light microscopy). The results of these studies are as follows: (a) Extractable AP activity is present in fresh but not glutaraldehyde-pretreated bovine pericardial tissue. However, histochemical studies reveal active AP within the intrinsic devitalized cells of GPBP, despite extended glutaraldehyde incubation. (b) Extrinsic AP is rapidly adsorbed following implantation, with peak activity at 72 h (424 ± 67.2 nm pnpp/mg protein/min enzyme activity [units]), but markedly lesser amounts at 21 days (96.8 ± 3.9 units). (c) Simultaneously to the AP activity maximum, bulk calcification is initiated, with GPBP calcium levels rising from 1.2 ± 0.1 (unimplanted) to 2.4 ± 0.2 μg/mg at 72 h, to 55.6 ± 3.1 μg/mg at 21 days, despite a marked decline in AP activity at this later time. (d) Preincubation of GPBP in either FeCl3 or AlCl3, at concentrations (0.1 M) which inhibited GPBP calcification, significantly reduce AP activity. We conclude that endogenous AP activity is present but not extractable in unimplanted GPBP fixed for extended periods. However, concurrent with the time of the onset of GPBP calcification in the rat subdermal model, AP adsorbed following implantation rises sharply to a maximum, thereby augmenting intrinsic enzyme. Preincubations of GPBP in either AlCl3 or FeCl3 not only prevent calcification, but also result in reduction in AP activity. These results strongly suggest that AP is an important cofactor in the mechanism of bioprosthetic valve mineralization and may be a fruitful target for anticalcification treatments.
    Additional Material: 14 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...