ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    New York : Wiley-Blackwell
    Biopolymers 9 (1970), S. 195-203 
    ISSN: 0006-3525
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: The aggregation of poly(γ-benzyl L-glutamate) has been studied by measuring the specific Kerr constants (B/c) over a tenfold range of concentration and the intrinsic viscosities of solutions of a low molecular weight sample of the polymer in four solvent mixtures, viz., benzene-dimethylformamide (DMF), benzene-ethylene dichloride (EDC), dioxane-DMF and dixoane-EDC. Sharp changes are found in the experimentally determined quantities on the addition of small amounts of polar solvent to solutions of the polymer in either benzene or dioxane; this implies that lyotropic phase changes are occuring. The aggregation in benzene produces a birefringent, viscous solution which is probably a smeetic liquid crystal. This changes on addition of polar solvent to an aggregation involving only a few molecules; the second aggregate is most likely antiparallel. Aggregation in dioxane is antiparallel; the existence of a smectic phase is ruled out by the low intrinsic viscosities.
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    New York : Wiley-Blackwell
    Biopolymers 10 (1971), S. 69-88 
    ISSN: 0006-3525
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: The intensity of Raman scattering from the various Raman active vibrations of poly-(riboadenylic acid), poly(ribocytidylic acid), poly(ribouridylic acid), and poly(riboinosinic acid) in moderately dilute solutions were examined as the temperature was changed to alter their conformation. It was found that certain highly intense, highly polarized Raman bands from the totally symmetric, i.e., in-plane, ring vibrations of the nucleic acid bases become less intense as the chains become more ordered in solution. Since these vibrations occur at frequencies which are markedly different for each type of base, Raman spectroscopy appears to provide a new method for the characterizing of the average conformation of each of the bases in solution. A theory for the resonant Raman effect is given in which it is shown that, a decrease in resonant Raman intensity is to be expected if one obtains a decrease in the intensity of the corresponding ultraviolet absorption band with which the incident light is resonant. If it is assumed that certain Raman bands derive their intensity predominantly from the first few ultraviolet absorption intensities, then a qualitative explanation of our observed conformational dependence of the ordinary Raman intensities can be obtained.
    Additional Material: 11 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 0006-3525
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: Raman spectra are presented on ordered and presumably helical structures of DNA and RNA as well as the poly A·poly U helical complex, polydAT, and the helical aggregates of 5′-GMP and 3′-GMP. The changes in the frequency and the intensity of the Raman bands as these structures undergo order-disorder transitions have been measured. In general the changes we have found can be placed into three categories: (1) A reduction in the intensities of certain ring vibrations of the polynucleotide bases is observed when stacking or ordering occurs (Raman hypochromism). Since the ring vibrational frequencies are different for each type of base, we have been able to obtain some estimate of average amount of order of each type of base in partially ordered helical systems. (2) A very large increase in the intensity of a sharp, strongly polarized band at about 815 cm-1 is observed when polyriboA and polyriboU are formed into a helical complex. Although this band is not present in the separated chains at high temperature, a broad diffuse band at about 800 cm-1 is present. The 815 cm-1 band undoubtedly arises from the vibrations of the phosphate-sugar portions of the molecule and provides a sensitive handle to the back-bone conformation of the polymer. This band also appears upon ordering of RNA, formation of the helical aggregate of 5′-riboGMP, and to some extent in the selfstacking of the polyribonucleotides polyA, polyU in the presence of Mg++, PolyC, and polyG. No such intense, polarized band is found, however, in ordered DNA, polydAT, or the 3′-riboGMP aggregate, although there is a conformationally independent band at about 795 cm-1 in DNA and polydAT. (3) Numerous frequency changes occur during Conformational changes. In particular the 1600-1700 cm-1 region in D2O shows significant conformationally dependent changes in the C=O stretching region analogous to the changes in this region which have been observed in these substances in the infrared. Thus, Raman scattering appears to provide a technique for simultaneously observing the effects of base stacking, backbone conformation and carbonyl hydrogen bonding in nucleic acids in moderately dilute (10-25 mg/ml) aqueous solutions.
    Additional Material: 19 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 0006-3525
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: The Raman spectra of the double helical complexes of poly C-poly G and poly I-poly C at neutral pH are presented and compared with the spectra of the constituent homopolymers.When a completely double-helical structure is formed in solution a strong sharp band at 810-814 cm-1 appears which has previously been shown to be due to the A-type conformation of the sugar-phosphate backbone chain. By taking the ratio of the intensity of the 810-814 cm-1 band to the intensity of the 1090-1100 cm-1 phosphate vibration, one can obtain an estimate of the fraction of the backbone chain in the A-type conformation for both double-stranded helices and self-stacked single chains. This type of information can apparently only be obtained by Raman spectroscopy.In addition, other significant changes in Raman intensities and frequencies have been observed and tabulated: (1) the Raman intensity of certain of the ring vibrations of guanine and hypoxanthine bases decrease as these bases become increasingly stacked (Raman hypochromism), (2) the Raman band at 1464 cm-1 in poly I is asigned to the amide II band of the cis-amide group of the hypoxanthine base. It shifts in frequency upon base pairing to 1484 cm-1, thus permitting the determination of the fraction of I-C pairs formed.
    Additional Material: 9 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    New York : Wiley-Blackwell
    Biopolymers 12 (1973), S. 2161-2176 
    ISSN: 0006-3525
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: The frequencies and intensities of the laser Raman spectra of poly-L-lysine (PLL) have been observed in the following studies: (1) the thermally induced α-to-β transition which occurs with increasing temperature at high pH; (2) the ionized form to α transition at 10°C by increasing pH; and (3) the ionized form to α transition by ionic strength at low pH.The frequency-dependent bands which have been observed are the amide I (in H2O), amide I′ (in D2O), amide III, and C-C stretch. It has been found possible to assign an unique set of frequencies and intensities to each conformation of PLL of α, β, and ionized form. In this way the nature of the conformations intermediate in the transitions can be determined. The frequencies of the amide III and amide III′ are very weak in the α-helix and somewhat higher than usual in the β form. Hence it appears the amide III and amide III′ bands may differ from one type of polypeptide to another with the same backbone conformation.
    Additional Material: 11 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    ISSN: 0006-3525
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    New York : Wiley-Blackwell
    Journal of Polymer Science Part B: Polymer Letters 9 (1971), S. 757-760 
    ISSN: 0449-2986
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...