ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Polymer and Materials Science  (60)
  • Analytical Chemistry and Spectroscopy  (16)
  • 1980-1984  (47)
  • 1970-1974  (29)
  • 1
    Electronic Resource
    Electronic Resource
    New York : Wiley-Blackwell
    Journal of Polymer Science: Polymer Letters Edition 18 (1980), S. 743-750 
    ISSN: 0360-6384
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    New York : Wiley-Blackwell
    Journal of Polymer Science: Polymer Letters Edition 18 (1980), S. 824-824 
    ISSN: 0360-6384
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    New York : Wiley-Blackwell
    Journal of Polymer Science: Polymer Letters Edition 20 (1982), S. 602-602 
    ISSN: 0360-6384
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    New York : Wiley-Blackwell
    Journal of Polymer Science: Polymer Letters Edition 21 (1983), S. 1005-1010 
    ISSN: 0360-6384
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Additional Material: 1 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    New York : Wiley-Blackwell
    Journal of Polymer Science: Polymer Letters Edition 18 (1980), S. 148-148 
    ISSN: 0360-6384
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    New York : Wiley-Blackwell
    Journal of Polymer Science: Polymer Letters Edition 12 (1974), S. 361-362 
    ISSN: 0360-6384
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Applied Polymer Science 17 (1973), S. 605-618 
    ISSN: 0021-8995
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: A theoretical model for drying of a thin gel film is presented. The model is based upon the premise that as solvent is removed from any portion of a gel structure which is permeable by the solvent, the structure shrinks locally to fill the voids left by the solvent. The diffusion coefficient of solvent through the gel film is assumed to be an exponential function of concentration and temperature. The governing equations for the model indicate that for nonisothermal drying, the results of drying and shrinkage rates are functions of 13 independent dimensionless system variables. These results are obtained with the help of a computer solution of the proposed model. The computer results indicate that, except under extreme temperature conditions, the drying and shrinkage rates are most influenced by dimensionless groups M, P, and P̄, defined by eq. (9) of the paper. Furthermore, the drying and shrinkage rates are essentially independent of groups M and P for the values of M and P greater than approximately 100 and 10, respectively. The effect of variable solvent diffusivity on approximate time to achieve the steady-state drying and shrinkage rates is approximately handled by defining a dimensionless time variable τ in terms of average solvent diffusivity. Finally, some experimental data on drying and shrinkage rates of isothermal drying of lyphogel film under natural convection condition are obtained. These data are found to be in qualitative agreement with similar computer predictions by the proposed model.
    Additional Material: 8 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Applied Polymer Science 17 (1973), S. 2761-2770 
    ISSN: 0021-8995
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: The nature and magnitude of mechanical reactions of polystyrene in capillary flow has been examined in a model extrusion process. Studies on polystyrene quantify the sensitive increase in shear degradation tendency with increasing polymer molecular weight. A molecular weight spectrum caused by the shear stress profile was measured across the extrudate radius by the new technique of solvent coring. It was further determined that an appreciable fraction of the mechanical reaction is shear induced in the capillary reservoir. This is confirmed by precision determinations of molecular weights and distributions by gel permeation chromatography on samples taken from concentric layers in the capillary reservoir after 50% sample extrusion. These results, involving traces of oxygen as a chemical probe, describe the stress profile in the reservoir and in the capillary during the pressure extrusion of high molecular weight polystyrene. Thus, changes in molecular weight and distribution may be attributable to changes in different portions of the shear geometry rather than the uniform changes generally considered. Clear evidence is also presented showing the dramatic effects of oxygen on these shear-induced changes in molecular weight and distribution.
    Additional Material: 2 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Applied Polymer Science 18 (1974), S. 1805-1819 
    ISSN: 0021-8995
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: Isoprene was polymerized in batch reactors by use of bottle polymerization techniques at 30°, 40°, and 50°C at concentrations from 1 to 5 molar. Butyllithium concentration was varied from 0.005 to 0.03 molar. Isoprene and n-butyllithium conversions and molecular weight distributions were determined for different reaction times. Rate equations for the initiation and propagation reactions are presented. The importance of the association reactions in obtaining a narrow molecular weight distribution is illustrated.
    Additional Material: 8 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Applied Polymer Science 26 (1981), S. 1309-1326 
    ISSN: 0021-8995
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: The crystalline state deformation of high density polyethylene has been examined at an extrusion draw ratio of 30 over a range of temperatures and pressures. The experiments involve combined pushing (extrusion) and pulling through a conical die. The pressure dependence of the extrusion rate through conical dies is given by a logarithmic relation and the temperature dependence by an activation energy of ∼95 kcal/mole. An equation established for the total applied force linearly relates the pulling and extrusion pressure components and represents a force balance at the die entrance and exit. Steady-state extrusion, with or without pulling, was feasible in a pressure range beyond which fractures occurred owing to strain rate and shear or tensile failure. Under some circumstances the extrusion rate was increased by ten times. The mechanical properties and mode of deformation were not affected by pull load and fibers with a tensile modulus of 55 GPa were produced at T 〈 110°C.
    Additional Material: 14 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...