ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Applied Biomaterials 6 (1995), S. 117-123 
    ISSN: 1045-4861
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine , Technology
    Notes: The main function of the intervertebral disc is to transmit and attenuate compressive and torsional forces, and stabilize the intervertebral joint. Unfortunately, the disc may be displaced or damaged due to trauma or disease causing the nucleus to herniate and protrude into the vertebral canal or intervertebral foramen. Pressure on the spinal nerve may cause pain or paralysis in the area of its distribution. At present, the surgical procedures used to alleviate this condition include disc excision, and/or spinal fusion. A more desirable situation would involve removing the nucleus pulposus and part or all of the annulus fibrosis and implanting a suitable biofunctional equivalent. Such a prostheis should attenuate stresses and prevent abnormal stress at adjacent intervertebral joints. Maintenance of normal disc height would prevent impingement of the posterior facet joints and facet joint syndrome. In a previous companion paper (J. Applied Biomat. 5:125-132; 1994), the mechanical behavior of disc prostheses manufactured from fiber reinforced, elastomeric thermoset resins were examined. In order to develop devices which were more practical from a manufacturing standpoint and extremely reproducible, the fiber reinforced thermoset resins were replaced by multi-durometer thermoplastic elastomeric materials. In the present paper, the mechanical properties of thermoplastic multicomponent desings have been investigated. © 1995 John Wiley & Sons, Inc.
    Additional Material: 2 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Bognor Regis [u.a.] : Wiley-Blackwell
    Journal of Polymer Science Part B: Polymer Physics 36 (1998), S. 1747-1755 
    ISSN: 0887-6266
    Keywords: kinetic sorption ; steady-state permeation/sorption ; polyimide ; carbon molecular sieve ; membrane separation processes ; Physics ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Physics
    Notes: Typically, materials with high-performance transport properties such as zeolites, carbon molecular sieves, or hyper rigid polymers are inherently difficult or impossible to characterize by steady-state membrane permeation experiments used for conventional polymers. Diffusion coefficients determined by transient sorption, a measurement easily performed on brittle media, are analyzed here and compared to those determined by steady-state permeation/sorption and transient permeation for a glassy polymer and a carbon molecular sieve. Average and local diffusion coefficients are extrapolated to zero upstream partial pressure to eliminate effects caused by concentration dependence. Good agreement between the techniques was observed for the glassy polymer. On the other hand, carbon molecular sieves, possessing a more complex morphology, exhibit a greater difference in diffusion coefficients determined by the various techniques. Nevertheless, comparison of the analysis techniques is shown to provide potentially valuable insights into the morphological features of such carbon molecular sieves. © 1998 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 36: 1747-1755, 1998
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Bognor Regis [u.a.] : Wiley-Blackwell
    Journal of Polymer Science Part B: Polymer Physics 34 (1996), S. 1197-1212 
    ISSN: 0887-6266
    Keywords: block polyelectrolyte solutions ; micelles ; light scattering ; phase separation ; NaCl solutions ; extreme dilution ; Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Physics
    Notes: Micellar solutions of polystyrene-b-poly(sodium acrylate) copolymers in aqueous NaCl were studied by static light scattering (SLS). It was found that micellar solutions of the copolymer, at concentrations of NaCl at, or above, 2.0 mol dm-3, became turbid on dilution at constant salt concentration and at constant temperature. Turbidity arose from highly dilute solutions (typically at a concentration three orders of magnitude lower than the overlap concentration of the micelle, C*), but at concentrations above the expected critical micellization concentrations (c.m.c.s). The observed turbidity was attributed to the phase separation of the micellar phase. A systematic investigation of the phase separation phenomenon was performed. The effects of various parameters on the solution behavior of the micellar solutions were studied, including the effect of the concentration of NaCl, the effect of temperature, and the effect of the length of the hydrophilic, corona-forming poly(sodium acrylate) block. Phase separation was attributed to the presence of a very large excess of NaCl in the dilute micellar solutions. It was proposed that phase separation arose because of the reduced hydration of the polyion, the decreased electrostatic repulsion between the micelles, and the increase in the amount of ion binding, which occur in highly dilute salt solutions. © 1996 John Wiley & Sons, Inc.
    Additional Material: 3 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Hoboken, NJ : Wiley-Blackwell
    Journal of Biomedical Materials Research 31 (1996), S. 465-474 
    ISSN: 0021-9304
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine , Technology
    Notes: The interfacial shear strength and bone tissue response was investigated for an arc deposited (AD) commercially pure titanium implant surface, with (AD/HA) and without (AD) plasma-sprayed hydroxyapatite (HA) coating. Ten purpose bred coonhounds received bilateral femoral stem implantation (AD and AD/HA) in the proximal femurs (hemiarthroplasty). The femoral prosthesis consisted of a modular CoCr alloy head, modular Ti-6A1-4V neck, and a 10-mm diameter cylindrical Ti-6A1-4V femoral stem. The AD surface had 30-35% greater surface roughness than the AD/HA surface. The HA coating had a purity greater than 90% and a crystallinity greater than 65%. After 6, 12, and 24 weeks, the implants were retrieved and analyzed with mechanical testing, qualitative and quantitative histology, and electron microscopy. The AD/HA implants had equivalent interfacial shear strengths to the AD implants at all time periods. The AD/HA implants had significantly greater linear bone contact than the AD implants. The 6-week implants had significantly thicker cortical bone than the 12- and 24-week implants. The HA coating was very stable in vivo, evidenced by no thickness reduction at any time period. Qualitatively, the AD/HA implants primarily had bone contacting the implant surface with little fibrous tissue present, and the AD implants had bone and fibrous tissue contacting the implant surface. The electron microscopy analysis showed that the mechanically tested implants exhibited a mixed failure mode at the bone, HA coating, and titanium interfaces. © 1996 John Wiley & Sons, Inc.
    Additional Material: 10 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Hoboken, NJ : Wiley-Blackwell
    Journal of Biomedical Materials Research 29 (1995), S. 1337-1348 
    ISSN: 0021-9304
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine , Technology
    Notes: The polymerization of desaminotyrosinetyrosylhexyl ester (DTH) with phosgene gives rise to poly(DTH carbonate), a new pseudopoly(amino acid). To evaluate the performance of this bioabsorbable material in orthopedic applications, the tissue responses elicited by compression-molded pins of poly(DTH carbonate) and clinically used polydioxanone pins (PDS; Orthosorb®) were compared. The two types of pins were implanted in the paravertebral muscle and in the metaphyseal proximal tibia and distal femur of 10 White New Zealand Rabbits for 1, 2, 4, and 26 weeks. The tissue response was evaluated using histologic staining of softand hard-tissue sections, fluorescent bone marker incorporation, and backscattered electron imaging. In soft tissue, both poly(DTH carbonate) and PDS elicited a mild inflammatory response resulting in encapsulation. During the disintegration phase, the PDS implants triggered a foreign body response involving the phagocytosis of polymeric debris by histiocytes and giant cells. No such response was observed for poly(DTH carbonate). In hard tissue, close bone apposition was observed throughout the 26-week test period for poly(DTH carbonate) implants. At the 26-week time point, the poly(DTH carbonate) implants exhibited surface erosion and were penetrated by new bone. In contrast, an intervening fibrous tissue layer was always present between the PDS pins and the bone. At 26 weeks, the PDS implants had partially resorbed and a foreign body response characterized by infiltration of inflammatory cells, and bone resorption was observed in several of the implantation sites. This study indicates that poly(DTH carbonate) and PDS exhibit fundamentally different interactions with hard tissue, and that poly(DTH carbonate) is a promising orthopedic implant material. © 1995 John Wiley & Sons, Inc.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...