ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Polymer and Materials Science  (2)
  • 1995-1999  (1)
  • 1990-1994  (1)
  • 1
    ISSN: 0935-9648
    Keywords: Sensors ; ISFETs and CHEMFETs ; Polysiloxanes ; Reference FETs ; Polymer Membranes ; Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: Synthetic receptor molecules that selectively bind charged guests can store chemical information. The transduction of this information into electronic signals connects the chemical and electronic domains. Field effect transistors (FETs) are attractive transducing elements because these microdevices are able to register and amplify chemical changes at the gate oxide surface of the semiconductor chip.Integration of molecular receptors and field effect transistors into one chemical system gives a device that can communicate-changes of substrate activities in aqueous solution. Simulations of a system in which the receptor molecules are directly attached to the FET gate oxide indicate serious limitations with respect to sensitivity, dynamic range and extreme requirements for complex stability. Therefore we have concentrated on the integration of covalently attached thin membranes.The problem of the thermodynamically ill-defined oxidemembrane ipterface has been solved by applying a covalently linked hydrophilic polyhydroxyethylmethacrylate (polyHEMA) gel between the sensing membrane and the silylated gate oxide. A buffered aqueous electrolyte solution in the hydrogel renders the surface potential at the gate oxide constant via the dissociation equilibrium of the residual silanol groups. The subsequent attachment of a polysiloxane membrane that has the required dielectric constant, glass transition temperature Tg, and receptor molecule, provides a stable chemical system that transduces the complexation of cationic species into electronic signals (CHEMFET).The response to changing K⊕ concentrations in a solution of 0.1 M NaCl is fast (〈1 sec) and linear in the concentration range of 10-5-1.0 M (55-58 mV /decade). A reference FET (REFET) based on the same technology is obtained when the intrinsic sensitivity to changes in ion concentration is eliminated by the addition of 2.10-5 mol g-1 of didodecyldimethyl ammonium bromide to the ACE membrane. Differential measurements with a REFET/CHEMFET combination showed excellent linear K⊕ response over long periods of time.All chemical reactions used are compatible with planar IC technology and allow fabrication on wafer scale.
    Additional Material: 9 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1022-1352
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Physics
    Notes: A new series of rigid polymers was synthesized via radical copolymerization of N-phenylmaleimides, bearing pendant chromophores, with 4-vinylpyridine or styrene. Structural characterization was achieved by 1H NMR and 13C NMR spectroscopy, gel permeation chromatography (GPC), elemental analysis and differential scanning calorimetry (DSC). The thermal properties as well as the morphology of the investigated polymers at the air-water interface appear to be related to their rigidity. In spite of the presence of excellent mesogenic units, the polymers do not exhibit liquid crystalline behaviour. The 4-vinylpyridine copolymers form stable monolayers at the air-water interface. The attached chromophores electronically behave as monomers, as shown with in situ UVVIS absorption spectroscopy. Brewster angle microscopy shows a spontaneous aggregation of these polymers into domains on a neutral subphase, whereas on an acidic subphase a more homogeneous monolayer is formed. The monolayers give Z-type transfer onto hydrophilic quartz. However, the chromophores seem to be oriented randomly at the substrate surface. The styrene copolymers do not form stable monolayers as a result of crystallization at the air-water interface.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...