ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2019-06-28
    Description: The nature of the nonlinear evolution of Kelvin-Helmholtz instability in the presence of sheared magnetic fields was investigated via numerical simulation. Models of the magnetosheath-magnetopause boundary in earth's tail and stream interaction regions in the inner heliosphere were studied. The development of the instability is influenced strongly by the orientation and magnitude of the magnetic field. Large vortical structures that resemble observations in the earth's tail can form while other cases generate turbulent spectra that provide insight into the generation of Alfven turbulence in the solar wind.
    Keywords: SPACE SCIENCES (GENERAL)
    Type: ESA, Proceedings of the 21st ESLAB Symposium on Small Scale Plasma Processes in the Solar Chromosphere(Corona, Interplanetary Medium and Planetary Magnetospheres; p 115-124
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-07-13
    Description: In this study, we examine a large number of plasma structures (filaments), observed with the Cluster spacecraft during 2 years (2007-2008) in the dayside magnetosphere but consisting of magnetosheath plasma. To reduce the effects observed in the cusp regions and on magnetosphere flanks, we consider these events predominantly inside the narrow cone less than 30 about the subsolar point. Two important features of these filaments are (i) their stable antisunward (earthward) motion inside the magnetosphere, whereas the ambient magnetospheric plasma moves usually in the opposite direction (sunward), and (ii) between these filaments and the magnetopause, there is a region of magnetospheric plasma, which separates these filaments from the magnetosheath. The stable earthward motion of these magnetopause show the possible disconnection of these filaments from the magnetosheath, as suggested earlier by many researchers. The results also show that these events cannot be a result of back-and-forth motions of magnetopause position or surface waves propagating on the magnetopause. Another important feature of these filaments is their rotation about the filament axis, which might be a result of their passage through the velocity shear on magnetopause boundary. After crossing the velocity shear, the filaments get a rotational velocity, which has opposite directions in the noon-dusk and noon-dawn sectors. This rotation velocity may be an important factor, supporting the stability of these filaments and providing their motion into the magnetosphere.
    Keywords: Plasma Physics
    Type: GSFC-E-DAA-TN40892 , Journal of Geophysical Research: Space Physics (ISSN 2169-9402) (e-ISSN 2169-9402); 121; 8; 7699-7712
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-13
    Description: In this paper, we examined plasma structures (filaments), observed in the dayside magnetosphere but containing magnetosheath plasma. These filaments show the stable antisunward motion (while the ambient magnetospheric plasma moved in the opposite direction) and the existence of a strip of magnetospheric plasma, separating these filaments from the magnetosheath. These results, however, contradict both theoretical studies and simulations by Schindler (1979), Ma et al. (1991), Dai and Woodward (1994, 1998), and other researchers, who reported that the motion of such filaments through the magnetosphere is possible only when their magnetic field is directed very close to the ambient magnetic field, which is not the situation that is observed. In this study, we show that this seeming contradiction may be related to different events as the theoretical studies and simulations are related to the case when the filament magnetic field is about aligned with filament orientation, whereas the observations show that the magnetic field in these filaments may be rotating. In this case, the rotating magnetic field, changing incessantly its direction, drastically affects the penetration of plasma filaments into the magnetosphere. In this case, the filaments with rotating magnetic field, even if in each moment it is significantly inclined to the ambient magnetic field, may propagate through the magnetosphere, if their average (for the rotation period) magnetic field is aligned with the ambient magnetic field. This shows that neglecting the rotation of magnetic field in these filaments may lead to wrong results.
    Keywords: Plasma Physics
    Type: GSFC-E-DAA-TN40899 , Journal of Geophysical Research: Space Physics (ISSN 2169-9380) (e-ISSN 2169-9402); 121; 8; 7713–7727
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-07-19
    Description: Over the past few decades, large-scales solar wind (SW) turbulence has been studied extensively, both theoretically and observationally. Observed power spectra of the low frequency turbulence, which can be described in the magnetohydrodynamic (MHD) limit, are shown to obey the Kolmogorov scaling, $k"{ -5/3 }$, down the local proton gyrofrequency ($C{ci} \sim O.l$-Hz). Turbulence at frequencies above $C{ci}$ has not been thoroughly investigated and remains far less well understood. Above $C{ ci}$ the spectrum steepens to $\sim f"{ -2.5}$ and a debate exists as to whether the turbulence has become dominated by dispersive kinetic Alfven waves (KA W) or by whistler waves, before it is dissipated at small scales, In a case study Sahraoui et al., PRL (2009) have reported the first direct determination of the dissipation range of solar wind turbulence near the electron gyroscale using the high resolution Cluster magnetic and electric field data (up to $10"2$-Hz in the spacecraft reference frame). Above the Doppler-shifted proton scale $C{\rho i}$ a new inertial range with a scaling $\sim f"{ -2.3}$ has been evidenced and shown to remarkably agree with theoretical predictions of a quasi-two-dimensional cascade into KA W turbulence. Here, we use a wider sample of data sets of small scale SW turbulence under different plasma conditions, and investigate under which physical criteria the KA W (or the whistler) turbulence may be observed to carry out the cascade at small scales, These new observations/criteria are compared to the predictions on the cascade and the (kinetic) dissipation from the Vlasov theory. Implications of the results on the heating problem of the solar wind will be discussed.
    Keywords: Plasma Physics
    Type: Cascade and Dissipation of Solar Wind Turbulence at Electron Scales: Whistlers of Kinetic Alfven Waves?; Dec 13, 2009 - Dec 18, 2009; San Francisco, CA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...