ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2019-07-18
    Description: Atmospheric gases escape from Venus as neutral and ionized atoms and molecules. Ion escape, considered here, occurs through ion pickup or collective plasma processes. The latter can arise from upward flow of nightside ionospheric plasma into the ionotail, day to night ionospheric flow into the ionotail, and scavenging of ionospheric plasma by ionosphere-magnetosheath instabilities at the ionopause. These plasma processes produce differing signatures in ion velocity and energy distributions and in ULF waves in the magnetic field. Using plasma ion spectra measured by the Pioneer Venus Orbiter (PVO) Orbiter Plasma Analyzer (OPA) and magnetic field fluctuations observed by the PVO Orbiter Magnetometer (OMAG) along with the expected particle and field signatures, various ion escape processes occurring along Pioneer Venus orbits are identified. In particular, OPA ion energy distributions are used in parallel with magnetic field power spectra and wave phase angles derived from OMAG measurements to study the characteristics of escaping ions. The principle ions observed escaping the influence of Venus are H+, He+ and 0'. In the ion energy distributions of the OPA, pickup ions appear hot relative to the much cooler ions flowing away from Venus in the ionotail and in the plasma clouds detached from the ionopause. This energy contrast is particularly evident downstream when PVO crosses the ionotail boundary from the hot solar wind plasma to the much cooler plasma within the tail. Magnetic field signatures accompanying the escaping ions appear as peaks in the power spectra at the corresponding ion cyclotron frequencies. Also, coherent wave trains at the same frequencies are observed in the phase angle plots of magnetic field fluctuations about the mean field.
    Keywords: Plasma Physics
    Type: IUGG 2003; Jun 30, 2003 - Jul 11, 2003; Sapporo; Japan
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-08-26
    Description: In this report we discuss the ion velocity distribution dynamics from the 3D hybrid simulation. In our model the background, pickup, and ionospheric ions are considered as a particles, whereas the electrons are described as a fluid. Inhomogeneous photoionization, electron-impact ionization and charge exchange are included in our model. We also take into account the collisions between the ions and neutrals. The current simulation shows that mass loading by pickup ions H(+); H2(+), CH4(+) and N2(+) is stronger than in the previous simulations when O+ ions are introduced into the background plasma. In our hybrid simulations we use Chamberlain profiles for the atmospheric components. We also include a simple ionosphere model with average mass M = 28 amu ions that were generated inside the ionosphere. The moon is considered as a weakly conducting body. Special attention will be paid to comparing the simulated pickup ion velocity distribution with CAPS T9 observations. Our simulation shows an asymmetry of the ion density distribution and the magnetic field, including the formation of the Alfve n wing-like structures. The simulation also shows that the ring-like velocity distribution for pickup ions relaxes to a Maxwellian core and a shell-like halo.
    Keywords: Plasma Physics
    Type: GSFC.JA.5175.2011 , Advances in Space Research (ISSN 0273-1177); 48; 6; 1114-1125
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-18
    Description: The Cassini Plasma Spectrometer (CAPS) instrument made measurements of Titan s plasma environment when the Cassini Orbiter flew through the moon s plasma wake October 26,2004 (flyby TA) and December 13,2004 (flyby TB). Preliminary CAPS ion and electron measurements from these encounters (1,2) are compared with measurements made by the Voyager I Plasma Science Instrument (PLS). The comparisons are used to evaluate previous interpretations and predictions of the Titan plasma environment that have been made using PLS measurements (3,4). The plasma wake trajectories of flybys TA, TB and Voyager 1 are similar because they occurred when Titan was near Saturn s local noon. These similarities make possible direct, meaningful comparisons between the various plasma wake measurements. The inquiries stimulated by the previous interpretations and predictions made using PLS data have produced the following results from the CAPS ion measurements: A) The major ambient ion components of Saturn s rotating magnetosphere in the vicinity of Titan are H+, H2+, and O+. B) Finite gyroradius effects are apparent in ambient 0 as the result of its interaction with Titan s atmosphere. C) The principal pickup ions are composed of H+, H2+, CH4+ and N2+. D) There is clear evidence of slowing down of the ambient plasma due to pickup ion mass loading; and, as the ionopause~ is approached, heavier pickup ions such as N2+ become dominant. The similarities and differences between the magnitudes and structures of the electron densities and temperatures along the three flyby trajectories are described
    Keywords: Instrumentation and Photography
    Type: AGU Joint Assembly; May 23, 2005 - May 27, 2005; New Orleans, LA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...