ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2018. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Atmospheric and Oceanic Technology 35 (2018): 281-297, doi:10.1175/JTECH-D-17-0076.1.
    Description: The wavenumber spectrum of sea surface height (SSH) is an important indicator of the dynamics of the ocean interior. While the SSH wavenumber spectrum has been well studied at mesoscale wavelengths and longer, using both in situ oceanographic measurements and satellite altimetry, it remains largely unknown for wavelengths less than ~70 km. The Surface Water Ocean Topography (SWOT) satellite mission aims to resolve the SSH wavenumber spectrum at 15–150-km wavelengths, which is specified as one of the mission requirements. The mission calibration and validation (CalVal) requires the ground truth of a synoptic SSH field to resolve the targeted wavelengths, but no existing observational network is able to fulfill the task. A high-resolution global ocean simulation is used to conduct an observing system simulation experiment (OSSE) to identify the suitable oceanographic in situ measurements for SWOT SSH CalVal. After fixing 20 measuring locations (the minimum number for resolving 15–150-km wavelengths) along the SWOT swath, four instrument platforms were tested: pressure-sensor-equipped inverted echo sounders (PIES), underway conductivity–temperature–depth (UCTD) sensors, instrumented moorings, and underwater gliders. In the context of the OSSE, PIES was found to be an unsuitable tool for the target region and for SSH scales 15–70 km; the slowness of a single UCTD leads to significant aliasing by high-frequency motions at short wavelengths below ~30 km; an array of station-keeping gliders may meet the requirement; and an array of moorings is the most effective system among the four tested instruments for meeting the mission’s requirement. The results shown here warrant a prelaunch field campaign to further test the performance of station-keeping gliders.
    Description: The authors would like to acknowledge the funding sources: the SWOT mission (JW, LF, DM); NASA Projects NNX13AE32G, NNX16AH76G, and NNX17AH54G (TF); and NNX16AH66G and NNX17AH33G (BQ). AF and MF were funded by the Keck Institute for Space Studies (which is generously supported by the W. M. Keck Foundation) through the project Science-driven Autonomous and Heterogeneous Robotic Networks: A Vision for Future Ocean Observations (http://kiss.caltech.edu/?techdev/seafloor/seafloor.html).
    Description: 2018-08-07
    Keywords: Altimetry ; In situ oceanic observations ; Profilers, oceanic ; Satellite observations ; Sensitivity studies ; Planning
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2018-06-11
    Description: An algorithm is proposed for the computation of streamfunction and velocity potential from given horizontal velocity vectors based on solving a minimization problem. To guarantee the uniqueness of the solution and computational reliability of the algorithm, a Tikhonov regularization is applied. The solution implies that the obtained streamfunction and velocity potential have minimal magnitude, while the given velocity vectors can be accurately reconstructed from the computed streamfunction and velocity potential. Because the formulation of the minimization problem allows for circumventing the explicit specification of separate boundary conditions on the streamfunction and velocity potential, the algorithm is easily applicable to irregular domains. By using an advanced minimization algorithm with the use of adjoint techniques, the method is computationally efficient and suitable for problems with large dimensions. An example is presented for coastal oceans to illustrate the practical application of the algorithm.
    Keywords: Meteorology and Climatology
    Type: Monthly Weather Review; Volume 134; Issue 11; 3384-3394
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-13
    Keywords: Meteorology and Climatology
    Type: World Meteorological Organization, Assimilation of Observations in Oceanography; Mar 13, 1995 - Mar 17, 1995; Tokyo; Japan
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-07-13
    Description: Buoyancy Generation: Various technology attempts include melting a wax, which pushes directly against a piston (U.S. Patent 5,291,847) or against a bladder (Webb Research), using ammonia or Freon 21 (U.S. Patent 5,303,552), and using solar heat to expand an oil (www.space.com, April, 10, 2002). All these heat-activated buoyancy control designs have thus far proved impractical and have ultimately failed during repeated cycling in ocean testing. JPL has demonstrated fully reversible 10 C encapsulated wax phase change, which can be used to change buoyancy without electrical hydraulic pumps. This technique has greatly improved heat transfer and much better reversibility than previous designs. Power Generation: Ocean Thermal Energy Conversion (OTEC) systems have been designed that transfer deep, cold sea water to the surface to generate electricity using turbine cycles with ammonia or water as the working fluid. JPL has designed several UUV systems: 1) Using a propeller water turbine to generate power on a gliding submersible; 2) Employing a compact CO2 turbine cycle powered by moving through thermoclines; and 3) Using melted wax to directly produce power through a piston-geared generator.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: ONR Joint Review of Unmanned Systems Technology Development; Feb 10, 2006; Panama City, FL; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-07-12
    Description: Thermally actuated hydraulic pumps have been proposed for diverse applications in which direct electrical or mechanical actuation is undesirable and the relative slowness of thermal actuation can be tolerated. The proposed pumps would not contain any sliding (wearing) parts in their compressors and, hence, could have long operational lifetimes. The basic principle of a pump according to the proposal is to utilize the thermal expansion and contraction of a wax or other phase-change material in contact with a hydraulic fluid in a rigid chamber. Heating the chamber and its contents from below to above the melting temperature of the phase-change material would cause the material to expand significantly, thus causing a substantial increase in hydraulic pressure and/or a substantial displacement of hydraulic fluid out of the chamber. Similarly, cooling the chamber and its contents from above to below the melting temperature of the phase-change material would cause the material to contract significantly, thus causing a substantial decrease in hydraulic pressure and/or a substantial displacement of hydraulic fluid into the chamber. The displacement of the hydraulic fluid could be used to drive a piston. The figure illustrates a simple example of a hydraulic jack driven by a thermally actuated hydraulic pump. The pump chamber would be a cylinder containing encapsulated wax pellets and containing radial fins to facilitate transfer of heat to and from the wax. The plastic encapsulation would serve as an oil/wax barrier and the remaining interior space could be filled with hydraulic oil. A filter would retain the encapsulated wax particles in the pump chamber while allowing the hydraulic oil to flow into and out of the chamber. In one important class of potential applications, thermally actuated hydraulic pumps, exploiting vertical ocean temperature gradients for heating and cooling as needed, would be used to vary hydraulic pressures to control buoyancy in undersea research vessels. Heretofore, electrically actuated hydraulic pumps have been used for this purpose. By eliminating the demand for electrical energy for pumping, the use of the thermally actuated hydraulic pumps could prolong the intervals between battery charges, thus making it possible to greatly increase the durations of undersea exploratory missions.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: NPO-40844 , NASA Tech Briefs, September 2008; 22-23
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...