ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Calcified tissue international 30 (1980), S. 179-182 
    ISSN: 1432-0827
    Keywords: Pineal gland ; Crystallinity of mineral ; Pineal sand ; Electron spin resonance
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine , Physics
    Notes: Summary Crystallinity of mineral in human pineal calcospherulites was determined by electron spin resonance spectrometry after irradiation of the samples with gamma rays in a60Co-source. The radiation-induced stable paramagnetic centers in the crystalline lattice of hydroxyapatite crystals were used as a marker of the crystalline fraction and related to the total mineral content. The crystallinity of pineal sand is higher than that of compact bone. The numerical value of the crystallinity coefficient depends on both the average crystal size of hydroxyapatite and the percentage of the crystalline fraction in the total amount of mineral. Literature data show that the average size of hydroxyapatite crystals in pineal sand are smaller than in bone tissue. It is, therefore, concluded that the higher crystallinity of pineal acervuli is due to the lower percentage of the submicrocrystalline fraction in their mineral.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...