ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 0006-3592
    Keywords: methanol sensor ; methanol monitoring and control ; methylotrophic yeast fermentation ; Pichia pastoris ; transferrin ; shake-flask cultures ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: The methylotrophic yeast Pichia pastoris can be used to express recombinant genes at high levels under the control of the methanol-inducible alcohol oxidase 1 (AOX1) promoter. Accurate regulation of the methanol concentration in P. pastoris cultures is necessary to maintain induction, while preventing accumulation of methanol to cytotoxic levels. We developed an inexpensive methanol sensor that uses a gas-permeable silicone rubber tube immersed in the culture medium and an organic solvent vapor detector. The sensor was used to monitor methanol concentration continuously throughout a fed-batch shake-flask culture of a P. pastoris clone producing the N-lobe of human transferrin. The sensor calibration was stable for the duration of the culture and the output signal accurately reflected the methanol concentration determined off-line by HPLC. A closed-loop control system utilizing this sensor was developed and used to maintain a 0.3% (v/v) methanol concentration in the culture. Use of this system resulted in a fivefold increase in volumetric protein productivity over levels obtained using the conventional fed-batch protocol. © 1997 John Wiley & Sons, Inc. Biotechnol Bioeng 56: 279-286, 1997.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Bioelectromagnetics 3 (1982), S. 237-245 
    ISSN: 0197-8462
    Keywords: liquid crystal thermometry ; microwave heating ; cells ; hyperthermia ; Life and Medical Sciences ; Occupational Health and Environmental Toxicology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Physics
    Notes: A nonperturbing technique of thin-layer liquid crystal thermometry was developed to quantitate heating of Chinese hamster ovary cells and the bacterium Serratia marcescens when exposed to 2450-MHz microwave fields at 0.2-0.5 W/cm2. Cells suspended in culture medium were injected into 5-cm glass microcapillary tubes coated on the inside with a thin layer of liquid crystal. The tubes were sealed and placed parallel to the electric field in a watertight waveguide exposure chamber where they were heated by circulating temperature-controlled water. Even at high circulation rates, liquid crystal color changes indicated local microwave capillary tube heating of 0.1-0.25 °C. Precision of measurement was 0.02 °C. Observations during microwave heating were significantly different from observations without microwaves at the 1% level, and heating increased as circulating water flow was reduced from 300 ml/s to 100 ml/s. The results of a cell survival assay following hyperthermal treatment were in good agreement with expectations based on the observations of microwave heating using liquid crystals.
    Additional Material: 2 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...