ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2013. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Global Biogeochemical Cycles 27 (2013): 1274–1290, doi:10.1002/2013GB004599.
    Description: Here we analyze the impact of projected climate change on plankton ecology in all major ocean biomes over the 21st century, using a multidecade (1880–2090) experiment conducted with the Community Climate System Model (CCSM-3.1) coupled ocean-atmosphere-land-sea ice model. The climate response differs fundamentally in the Northern and Southern Hemispheres for diatom and small phytoplankton biomass and consequently for total biomass, primary, and export production. Increasing vertical stratification in the Northern Hemisphere oceans decreases the nutrient supply to the ocean surface. Resulting decreases in diatom and small phytoplankton biomass together with a relative shift from diatoms to small phytoplankton in the Northern Hemisphere result in decreases in the total primary and export production and export ratio, and a shift to a more oligotrophic, more efficiently recycled, lower biomass euphotic layer. By contrast, temperature and stratification increases are smaller in the Southern compared to the Northern Hemisphere. Additionally, a southward shift and increase in strength of the Southern Ocean westerlies act against increasing temperature and freshwater fluxes to destratify the water-column. The wind-driven, poleward shift in the Southern Ocean subpolar-subtropical boundary results in a poleward shift and increase in the frontal diatom bloom. This boundary shift, localized increases in iron supply, and the direct impact of warming temperatures on phytoplankton growth result in diatom increases in the Southern Hemisphere. An increase in diatoms and decrease in small phytoplankton partly compensate such that while total production and the efficiency of organic matter export to the deep ocean increase, total Southern Hemisphere biomass does not change substantially. The impact of ecological shifts on the global carbon cycle is complex and varies across ecological biomes, with Northern and Southern Hemisphere effects on the biological production and export partially compensating. The net result of climate change is a small Northern Hemisphere-driven decrease in total primary production and efficiency of organic matter export to the deep ocean.
    Description: I. Marinov was supported by National Science Foundation (NSF) Grant ATM06-28582 while at WHOI and by NASA Grant NNX13AC92G while at Penn. I. Lima and S. Doney were supported by the Center for Microbial Oceanography, Research, and Education (CMORE), an NSF Science and Technology Center (EF-0424599).
    Description: 2014-06-20
    Keywords: Phytoplankton ; Climate change ; Ocean models
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: text/plain
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2017. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Global Biogeochemical Cycles 31 (2017): 922–940, doi:10.1002/2016GB005615.
    Description: A coupled global numerical simulation (conducted with the Community Earth System Model) is used in conjunction with satellite remote sensing observations to examine the role of top-down (grazing pressure) and bottom-up (light, nutrients) controls on marine phytoplankton bloom dynamics in the Southern Ocean. Phytoplankton seasonal phenology is evaluated in the context of the recently proposed “disturbance-recovery” hypothesis relative to more traditional, exclusively “bottom-up” frameworks. All blooms occur when phytoplankton division rates exceed loss rates to permit sustained net population growth; however, the nature of this decoupling period varies regionally in Community Earth System Model. Regional case studies illustrate how unique pathways allow blooms to emerge despite very poor division rates or very strong grazing rates. In the Subantarctic, southeast Pacific small spring blooms initiate early cooccurring with deep mixing and low division rates, consistent with the disturbance-recovery hypothesis. Similar systematics are present in the Subantarctic, southwest Atlantic during the spring but are eclipsed by a subsequent, larger summer bloom that is coincident with shallow mixing and the annual maximum in division rates, consistent with a bottom-up, light limited framework. In the model simulation, increased iron stress prevents a similar summer bloom in the southeast Pacific. In the simulated Antarctic zone (70°S–65°S) seasonal sea ice acts as a dominant phytoplankton-zooplankton decoupling agent, triggering a delayed but substantial bloom as ice recedes. Satellite ocean color remote sensing and ocean physical reanalysis products do not precisely match model-predicted phenology, but observed patterns do indicate regional variability in mechanism across the Atlantic and Pacific.
    Description: NDSEG Graduate Fellowship; National Aeronautics and Space Administration Ocean Biology and Biogeochemistry Program Grant Number: NNX14L86G; NSF Poloar Programs Award Grant Number: 1440435; National Aeronautics and Space Administration Grant Number: NNX14AL86G; NDSEG; National Science Foundation Grant Number: 1440435
    Description: 2017-11-30
    Keywords: Southern Ocean ; Phytoplankton ; Bloom phenology ; Top-down controls ; Bottom-up controls ; Modeling
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2013]. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Climate 26 (2013): 6775–6800, doi:10.1175/JCLI-D-12-00184.1.
    Description: Ocean carbon uptake and storage simulated by the Community Earth System Model, version 1–Biogeochemistry [CESM1(BGC)], is described and compared to observations. Fully coupled and ocean-ice configurations are examined; both capture many aspects of the spatial structure and seasonality of surface carbon fields. Nearly ubiquitous negative biases in surface alkalinity result from the prescribed carbonate dissolution profile. The modeled sea–air CO2 fluxes match observationally based estimates over much of the ocean; significant deviations appear in the Southern Ocean. Surface ocean pCO2 is biased high in the subantarctic and low in the sea ice zone. Formation of the water masses dominating anthropogenic CO2 (Cant) uptake in the Southern Hemisphere is weak in the model, leading to significant negative biases in Cant and chlorofluorocarbon (CFC) storage at intermediate depths. Column inventories of Cant appear too high, by contrast, in the North Atlantic. In spite of the positive bias, this marks an improvement over prior versions of the model, which underestimated North Atlantic uptake. The change in behavior is attributable to a new parameterization of density-driven overflows. CESM1(BGC) provides a relatively robust representation of the ocean–carbon cycle response to climate variability. Statistical metrics of modeled interannual variability in sea–air CO2 fluxes compare reasonably well to observationally based estimates. The carbon cycle response to key modes of climate variability is basically similar in the coupled and forced ocean-ice models; however, the two differ in regional detail and in the strength of teleconnections.
    Description: The CESM project is supported by the National Science Foundation and the Office of Science (BER) of the U.S. Department of Energy. SCD acknowledges support of Collaborative Research: Improved Regional and Decadal Predictions of the Carbon Cycle (NSFAGS- 1048827).
    Description: 2014-03-15
    Keywords: Carbon cycle ; Carbon dioxide ; Climate change ; Climate models ; Coupled models ; Oceanic chemistry
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2022-05-26
    Description: Author Posting. © American Meteorological Society, 2014. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Climate 27 (2014): 8981–9005, doi:10.1175/JCLI-D-12-00565.1.
    Description: Version 1 of the Community Earth System Model, in the configuration where its full carbon cycle is enabled, is introduced and documented. In this configuration, the terrestrial biogeochemical model, which includes carbon–nitrogen dynamics and is present in earlier model versions, is coupled to an ocean biogeochemical model and atmospheric CO2 tracers. The authors provide a description of the model, detail how preindustrial-control and twentieth-century experiments were initialized and forced, and examine the behavior of the carbon cycle in those experiments. They examine how sea- and land-to-air CO2 fluxes contribute to the increase of atmospheric CO2 in the twentieth century, analyze how atmospheric CO2 and its surface fluxes vary on interannual time scales, including how they respond to ENSO, and describe the seasonal cycle of atmospheric CO2 and its surface fluxes. While the model broadly reproduces observed aspects of the carbon cycle, there are several notable biases, including having too large of an increase in atmospheric CO2 over the twentieth century and too small of a seasonal cycle of atmospheric CO2 in the Northern Hemisphere. The biases are related to a weak response of the carbon cycle to climatic variations on interannual and seasonal time scales and to twentieth-century anthropogenic forcings, including rising CO2, land-use change, and atmospheric deposition of nitrogen.
    Description: The CESM project is supported by the National Science Foundation and the Office of Science (BER) of the U.S. Department of Energy. Computing resources were provided by the Climate Simulation Laboratory at NCAR’s Computational and Information Systems Laboratory (CISL), sponsored by the National Science Foundation and other agencies. This research was enabled by CISL compute and storage resources. SCD acknowledges support from the National Science Foundation (NSF AGS-1048827). This research is supported in part by the U.S. Department of Energy (DOE), Office of Science, Biological and Environmental Research. Oak Ridge National Laboratory is managed by UT-BATTELLE for DOE under contract DE-AC05-00OR22725.
    Description: 2015-06-15
    Keywords: Carbon cycle ; Climate models ; Coupled models ; Model evaluation/performance
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...