ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    New York : Wiley-Blackwell
    Journal of Polymer Science: Polymer Chemistry Edition 11 (1973), S. 301-303 
    ISSN: 0360-6376
    Keywords: Physics ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    New York : Wiley-Blackwell
    Journal of Polymer Science: Polymer Chemistry Edition 11 (1973), S. 143-162 
    ISSN: 0360-6376
    Keywords: Physics ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: We have performed a series of seeded styrene emulsion polymerizations in which the second stage of growth was initiated only after the second-stage monomer charge had achieved equilibrium saturation with the seed particles. The final particles were observed in the electron microscope by using two means of distinguishing between the first- and second-generation polymer: (a) butadiene tagging and osmium tetroxide staining coupled with ultramicrotomy and (b) tritiated-styrene tagging coupled with autoradiographic detection. We find that the first- and second-generation polymer chains are not uniformly mixed throughout the final latex product; rather, the second-generation polymer overcoats the seed polymer in a core-shell fashion. In order to explain these results, we present the viewpoint that monomer actually concentrates at the periphery of the swollen particle to form a monomer-encapsulated structure, rather than swelling the particle uniformly as has always been envisioned. We believe the encapsulation phenomena to be governed by the microscopic thermodynamic environment of the latex particles which has, in turn, a profound effect upon the conformational behavior of the long-chain polymer molecules as they interact with the particle-water interface.
    Additional Material: 16 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    New York : Wiley-Blackwell
    Journal of Polymer Science: Polymer Chemistry Edition 12 (1974), S. 2123-2132 
    ISSN: 0360-6376
    Keywords: Physics ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Additional Material: 2 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...