ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    New York : Wiley-Blackwell
    Journal of Polymer Science: Polymer Physics Edition 21 (1983), S. 1205-1216 
    ISSN: 0098-1273
    Keywords: Physics ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Physics
    Notes: Measurements of the viscosity coefficient η of solutions of polystyrene (Mw = 6.0 × 105 and 1.77 × 106) in trans-decalin (TD, θ solvent) and toluene (TL, good solvent) as function of shear rate (11-104 s-1), concentration (4.24-11.21 wt %), and temperature (10-50°C) are reported. As a new theoretically grounded method for the determination of the zero-shear viscosity η0 it is proposed to plot η as a function of $\left({\eta \dot \gamma} \right)^3$. The intercepts of the straight lines obtained by this procedure give η0 in good agreement with directly measured values.
    Additional Material: 8 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    New York : Wiley-Blackwell
    Journal of Polymer Science: Polymer Physics Edition 21 (1983), S. 1217-1226 
    ISSN: 0098-1273
    Keywords: Physics ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Physics
    Notes: The viscosity data of moderately concentrated polystyrene solutions in trans-decalin (TD) (θ solvent, θ temperature 21°C) and toluene (TL) (good solvent) reported in Part I are discussed in terms of Graessley's entanglement theory. Under good solvent conditions, Graessley's master curve provides an excellent fit up to high shear rates, whereas in the vicinity of the θ conditions the data have to be modified by a parameter ηfric introduced by Ito and Shishido. The characteristic time of mechanical response to flow of chains approximately given by the shift factor τ0 is found in good solvents to be on the order of the Rouse relaxation time. In poor solvents, close to demixing, τ0 tends to much higher values, indicating a reduced chain mobility. The influence of temperature on the viscosity decreases with increasing shear. The resulting apparent energy of activation of flow shows very small or even negative values at high shear rates. This behavior can be explained by the modified Graessley theory, however, in a quite natural way.
    Additional Material: 10 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...