ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Physical Chemistry  (2)
Collection
Publisher
Years
  • 1
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    International Journal of Chemical Kinetics 18 (1986), S. 1215-1234 
    ISSN: 0538-8066
    Keywords: Chemistry ; Physical Chemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: The unimolecular decomposition of 2,2 dimethyloxetance to give either isobutence and formaldehyde or ethene and acetone induced by a pulsed CO2 laser has been investigated. Absorption characteristics and fractional decomposition have been studied as a function of laser fluence, irradiation frequency, reactant pressure, and added inert bath gas. Both absorption cross section and fractional decomposition are approximately independent of pressure of 2,2-dimethyloxetane below 50 times; 10-3 torr and increase with pressure at higher pressures of 2,2-dimethyloxetane. At pressures sufficiently low that collisions are negligible during the laser pulse, added inert gases reduce the amount of decomposition. Calculations of the fractional decomposition have been carried out based on RRKM theory and assuming either a Boltzmann or a Poisson intermolecular energy distribution. Master equation calculations of both absorption and decomposition for 10R20 irradiation have also been performed. Agreement between observed and calculated results for 10R20 irradiation could be obtained only by assuming that most, but not all, of the molecules in the irradiated volume absorb the laser radiation. Differences between the absorptions of the 10R20 and 9P20 lines and in the resulting extents of decomposition indicate that the fraction of irradiated molecules which absorbs 9P20 radiation is smaller than the fraction which absorbs 10R20 radiation.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 0538-8066
    Keywords: Chemistry ; Physical Chemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: The pulsed CO2 laser-induced decompositions of propan-2-ol, butan-2-ol, pentan-2-ol, pentan-3-ol, and hexan-2-ol in the gas phase have been investigated. Like ethanol which we examined previously [1] the absorption cross section of propan-2-ol for pulsed 9R14 radiation increases with pressure at low pressures, an effect attributed to rotational hole-filling. In contrast the absorption cross section of butan-2-ol (10R24) has only a small pressure dependence and those of pentan-2-ol (9R26), pentan-3-ol (10R14), and hexan-2-ol (9P20) show little or no variation with pressure in the range 0.1-5.0 torr.Decomposition products have been investigated at low pressure where the excitation of the alkanols was essentially collision free. The observed products for all the alkanols can be rationalized on the basis of primary dehydration and C—C fission channels, with minor contributions from other molecular eliminations. © 1994 John Wiley & Sons, Inc.
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...