ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    International Journal of Chemical Kinetics 23 (1991), S. 579-591 
    ISSN: 0538-8066
    Keywords: Chemistry ; Physical Chemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: The kinetics of the reactions of IO, BrO, and ClO with DMS have been investigated at 298 K and total pressures of 0.5-6.8 mbar He using the discharge flow-mass spectrometry technique to monitor the halogen oxide radicals. Rate coefficients of (8.8 ± 2.1) × 10-15, (2.7 - 0.5) × 10-13 and (9.5 ± 2.0) × 10-15 cm3 molecule-1 s-1 have been obtained for the reactions of IO, BrO, and ClO with DMS, respectively. The result for IO with DMS is in good agreement with two other recent studies on this reaction but is nearly three orders of magnitude slower than two earlier studies, one of which was from this laboratory. The earlier studies are now thought to be in error because of heterogeneous and secondary chemistry occurring in the systems investigated. The rate coefficient for BrO with DMS is in excellent agreement with a previously reported preliminary value from this laboratory. However, the rate coefficient for ClO with DMS is a factor of 4 lower than our previously determined value. The new data are considered more reliable in view of the much improved experimental technique in the present study. DMSO was detected as a product in all of these reactions. A semi-quantitative determination of the DMSO yield was only possible in the case of the reaction of IO with DMS where a yield of 84 ± 40% was found.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    International Journal of Chemical Kinetics 26 (1994), S. 827-845 
    ISSN: 0538-8066
    Keywords: Chemistry ; Physical Chemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: Haloacetyl, peroxynitrates are intermediates in the atmospheric degradation of a number of haloethanes. In this work, thermal decomposition rate constants of CF3C(O)O2NO2, CClF2C(O)O2NO2, CCl2FC(O)O2NO2, and CCl3C(O)O2NO2 have been determined in a temperature controlled 420 l reaction chamber. Peroxynitrates (RO2NO2) were prepared in situ by photolysis of RH/Cl2/O2/NO2/N2 mixtures (R = CF3CO, CClF2CO, CCl2FCO, and CCl3CO). Thermal decomposition was initiated by addition of NO, and relative RO2NO2 concentrations were measured as a function of time by long-path IR absorption using an FTIR spectrometer. First-order decomposition rate constants were determined at atmospheric pressure (M = N2) as a function of temperature and, in the case of CF3C(O)O2NO2 and CCl3C(O)O2NO2, also as a function of total pressure. Extrapolation of the measured rate constants to the temperatures and pressures of the upper troposphere yields thermal lifetimes of several thousands of years for all of these peroxynitrates. Thus, the chloro(fluoro)acetyl peroxynitrates may play a role as temporary reservoirs of Cl, their lifetimes in the upper troposphere being limited by their (unknown) photolysis rates. Results on the thermal decomposition of CClF2CH2O2NO2 and CCl2FCH2O2NO2 are also reported, showing that the atmospheric lifetimes of these peroxynitrates are very short in the lower troposphere and increase to a maximum of several days close to the tropopause. The ratio of the rate constants for the reactions of CF3C(O)O2 radicals with NO2 and NO was determined to be 0.64 ± 0.13 (2σ) at 315 K and a total pressure of 1000 mbar (M = N2). © 1994 John Wiley & Sons, Inc.
    Additional Material: 9 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    International Journal of Chemical Kinetics 6 (1974), S. 725-739 
    ISSN: 0538-8066
    Keywords: Chemistry ; Physical Chemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: Reactions of ozone with simple olefins have been studied between 6 and 800 mtorr total pressure in a 220-m3 reactor. Rate constants for the removal of ozone by an excess of olefin in the presence of 150 mtorr oxygen were determined over the temperature range 280 to 360° K by continuous optical absorption measurements at 2537 Å. The technique was tested by measuring the rate constants k1 and k2 of the reactions (1) NO + O3 → NO2 + O2 and (2) NO2 + O3 rarr; NO3 + O2 which are known from the literature. The results for NO, NO2, C2H4, C3H6, 2-butene (mixture of the isomers), 1,3→butadiene, isobutene, and 1,1 -difluoro-ethylene are 1.7 × 10-1 4 (290°K), 3.24 × 10-17 (289°K), 1.2 × 10-1 4 exp (-4.95 ± 0.20/RT), 1.1 × 10-1 4 exp (-3.91 ± 0.20/RT), 0.94 × 10-1 4 exp ( -2.28 ± 0.15/RT), 5.45 ± 10-1 4 exp ( -5.33 ± 0.20/RT), 1.8 ×10-17 (283°K), and 8 × 10-20 cm3/molecule ·s(290°K). Productformation from the ozone-propylene reaction was studied by a mass spectrometric technique. The stoichiometry of the reaction is near unity in the presence of molecular oxygen.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    International Journal of Chemical Kinetics 19 (1987), S. 489-501 
    ISSN: 0538-8066
    Keywords: Chemistry ; Physical Chemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: A steady-state system involving the photolysis of NO2 in an excess of I2 as a source of IO radicals has been used to study the reaction IO + DMS in 760 Torr N2 at 296 K. IO radicals were found to react rapidly with DMS, one molecule of DMSO being produced for each molecule of DMS consumed. Numerical analysis of the experimental results yielded a rate constant of (3.0 ± 1.5) × 10-11 cm3 s-1 for the reaction IO + DMS → DMSO + I.
    Additional Material: 3 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    International Journal of Chemical Kinetics 15 (1983), S. 631-645 
    ISSN: 0538-8066
    Keywords: Chemistry ; Physical Chemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: The reaction of OH radicals with CS2 has been investigated by the application of Fourier transform infrared spectroscopy using both photolytic and nonphotolytic competitive techniques in a 420-L reaction chamber at different pressures over the temperature range of 264-293 K. The measured effective rate constant was found to be dependent on total pressure, temperature, and the mole fraction of O2 present in the system. The products of the reaction were found to be COS and SO2 with one molecule of each being formed for every reacted CS2. A value of (2.7 ± 0.6) × 10-12 cm3/molecule·s was obtained as effective rate constant for the reaction at 293 K in 760 torr of synthetic air.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    International Journal of Chemical Kinetics 28 (1996), S. 115-123 
    ISSN: 0538-8066
    Keywords: Chemistry ; Physical Chemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: The gas-phase reaction of CH(X2 Π) radicals with molecular nitrogen was studied in the temperature range 298-1059 K at total pressures between 10 and 620 torr. CH radicals were generated by excimer laser photolysis of CHCIBr2 at 248 nm and were detected by laser-induced fluorescence. The investigated reaction shows a strong temperature and pressure dependence. At pressures of 20, 100, and 620 torr the Arrhenius plots exhibit a strong decrease of the rate constant with increasing temperature. The rate constant is well described by, with E0 in kJ/mol. The pressure dependence was studied at temperatures of 298, 410, 561, and 750 K. The rate constants for each temperature were fitted by the Troe formalism. From the calculated values of k0 and kinfinity, the Arrhenius expressions, were obtained with E0 (k0) and EA (kinfinity) in units of kJ/mol. Within the range of 298-750 K the temperature dependence of the broadening factor is well described by Fc = 0.029 + (173.3/T). © 1996 John Wiley & Sons, Inc.
    Additional Material: 8 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    International Journal of Chemical Kinetics 28 (1996), S. 565-577 
    ISSN: 0538-8066
    Keywords: Chemistry ; Physical Chemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: Using the relative kinetic method rate coefficients have been determined for the gas-phase reaction of bromine (Br) radicals with a series of alkenes, chloroalkenes, dienes, and aromatic hydrocarbons in 1000 mbar of synthetic air at 298 ± 2 K. Both the UV photolysis of CH2Br2 (λ = 254 nm) and the visible photolysis of Br2 (320 ≤ λ ≤ 480) were used to generate Br radicals. For the alkenes and dienes the following rate coefficients were obtained (in units of 10-12 cm3 molecule-1 s-1): trans-2-butene 9.26 ± 1.85; 2-methyl-1-butene 15.20 ± 3.00; 2-methyl-2-butene 19.10 ± 3.80; 2,3-dimethyl-2-butene 28.20 ± 5.60; α-pinene 22.20 ± 4.40. β-pinene 28.60 ± 5.70; 1,3-butadiene 57.50 ± 11.50; isoprene 74.20 ± 14.80; and 2,3-dimethyl-1,3-butadiene 81.7 ± 16.30. For the chloroalkenes and aromatic hydrocarbons the following rate coefficients were obtained (in units of 10-13 cm3 molecule-1 s-1): chloroethene 7.37 ± 1.92; 1,1-dichloroethene 3.66 ± 0.73; trichloroethene 0.90 ± 0.18; tetrachloroethene ≤ 0.1; benzene ≤ 0.10; toluene ≤ 0.10; p-xylene ≤ 0.10; and furan ≤ 0.10. With the exception of trans-2-butene, this study represents the first determination of the rate coefficients for all of the compounds. © 1996 John Wiley & Sons, Inc.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    International Journal of Chemical Kinetics 21 (1989), S. 499-517 
    ISSN: 0538-8066
    Keywords: Chemistry ; Physical Chemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: Rate constants of Br atom reactions have been determined using a relative kinetic method in a 20 l reaction chamber at total pressures between 25 and 760 torr in N2 + O2 diluent over the temperature range 293-355 K. The measured rate constants for the reactions with alkynes and alkenes showed dependence upon temperature, total pressure, and the concentration of O2 present in the reaction system.Values of (6.8 ± 1.4) × 10-15, (3.6 ± 0.7) × 10-14, (1.5 ± 0.3) × 10-12, (1.6 ± 0.3) × 10-13, (2.7 ± 0.5) × 10-12, (3.4 ± 0.7) × 10-12, and (7.5 ± 1.5) × 10-12 (units: cm3 s-1) have been obtained as rate constants for the reactions of Br with 2,2,4-trimethylpentane, acetylene, propyne, ethene, propene, 1-butene, and trans-2-butene, respectively, in 760 torr of synthetic air at 298 K with respect to acetaldehyde as reference, k = 3.6 × 10-12 cm3 s-1.Formyl bromide and glyoxal were observed as primary products in the reaction of Br with acetylene in air which further react to form CO, HBr, HOBr, and H2O2. Bromoacetaldehyde was observed as an primary product in the reaction of Br with ethene. Other observed products included CO, CO2, HBr, HOBr, BrCHO, bromoethanol, and probably bromoacetic acid.
    Additional Material: 2 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    International Journal of Chemical Kinetics 20 (1988), S. 415-431 
    ISSN: 0538-8066
    Keywords: Chemistry ; Physical Chemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: The rate constant of the reaction of OH with DMS has been measured relative to OH + ethene in a 420 l reaction chamber at 760 torr total pressure and 298 ± 3 K in N2 + O2 buffer gas using the 254 nm photolysis of H2O2 as the OH source. In agreement with a recent absolute rate determination of the reaction the measured effective rate constant was found to increase with increasing partial pressure of O2 in the system, for 760 torr air a rate constant of (8.0 ± 0.5) × 10-12 cm3 s-1 was obtained.Product studies have been performed on the reaction in air using FTIR absorption spectrometry for detection of reactants and products. On a molar basis, SO2 was formed with a yield of 70% and dimethyl sulfone (CH3SO2CH3) with a yield of approximately 20%. These results are considerably different to those obtained in other product studies which were carried out in the presence of NOx. These differences are compared and their relevance for the atmospheric oxidation mechanisms of DMS is discussed.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...