ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-1939
    Keywords: Forest decline ; Picea abies ; Mineral deficiency ; Photosynthetic capacity ; Air pollution
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary Spruce (Picea abies) damage in the Fichtelgebirge (FRG) occurs as needle bleaching and a depression of CO2 assimilation. Such injury may primarily result from the direct, above-ground effects of air pollution or indirect, below-ground changes in mineral uptake. Typically, the new flush of spruce needles is green and exhibits high photosynthetic capacity. Mies and Zöttl concluded that the older foliage is damaged when nutrients are withdrawn to supply the current year's needles. By removing the terminal buds of single branches in the spring, we produced an experimental set of the previous year's needles with greater mineral reserves than the control needles. During the course of the growing period, the performance of the experimental needles, which lacked competition from the new flush, was compared to that of the control needles of the same age-class on intact branches with the new flush. Throughout the experiment, chloroplast pigments of a healthy control tree were not affected by the elimination of the new flush. However, the chlorophyll and carotenoid content as well as the photosynthetic capacity of the previous year's needles on those branches of a heavily damaged tree where the new flush had been eliminated increased substantially. This increase was associated with an increase in minerals, which seemed to be deficient in the control needles with the new flush. Thus, in contrast to needles of the same age-class on intact branches with undisturbed new growth in the same atmospheric environment, the experimental needles escaped bleaching and a decrease in photosynthesis. It would seem that the bleaching and the loss in photosynthetic capacity typical of trees damaged by forest decline indirectly result from nutrient deficiencies through soil environment changes and/or root damage than directly from atmospheric pollutants.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-2285
    Keywords: Forest decline ; Photosynthetic capacity ; Picea abies ; Stomatal conductance
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Summary Routine field determination of the parameters characterizing the activity of the photosynthetic apparatus is often difficult when attached branches of tall trees have to be used for gas exchange measurement. If severed twigs could be used, determining these parameters would be greatly facilitated. Because stomatal conductance changes when twigs or leaves are detached, CO2 assimilation is usually altered. Thus, measurements made at ambient CO2 concentration fail to accurately assess the activity of the photosynthetic apparatus because photosynthetic rates greatly depend on the supply of carbon dioxide. However, when photosynthetic carboxylation reactions are saturated by increased CO2 partial pressure in the mesophyll, CO2 assimilation rates no longer depend on instantaneous stomatal conductance, as shown by gas exchange measurements of spruce (Picea abies) twigs prior to and following detachment. Because net photosynthesis following detachment at saturating CO2 remains constant for a minimum of 15 min, photosynthetic measurements of severed twigs may be reliable. This length of time is sufficient for detaching and recutting the twig, assembling a portable minicuvette system, re-establishing steady-state conditions with the gas analyser system, and reading the data over a reasonable period of time. The method described measures the maximal photosynthetic CO2 assimilation of spruce needles of a single age-class from detached spruce twigs under the following conditions: saturating light, saturating external CO2-partial pressure, standardized temperature and air humidity in the field. The method is applicable as a routine procedure to characterize the status of the photosynthetic apparatus of spruce trees that may be damaged in the process of forest decline.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...