ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
  • 1
    Publikationsdatum: 2012-06-23
    Beschreibung: Ecosystem respiration is the biotic conversion of organic carbon to carbon dioxide by all of the organisms in an ecosystem, including both consumers and primary producers. Respiration exhibits an exponential temperature dependence at the subcellular and individual levels, but at the ecosystem level respiration can be modified by many variables including community abundance and biomass, which vary substantially among ecosystems. Despite its importance for predicting the responses of the biosphere to climate change, it is as yet unknown whether the temperature dependence of ecosystem respiration varies systematically between aquatic and terrestrial environments. Here we use the largest database of respiratory measurements yet compiled to show that the sensitivity of ecosystem respiration to seasonal changes in temperature is remarkably similar for diverse environments encompassing lakes, rivers, estuaries, the open ocean and forested and non-forested terrestrial ecosystems, with an average activation energy similar to that of the respiratory complex (approximately 0.65 electronvolts (eV)). By contrast, annual ecosystem respiration shows a substantially greater temperature dependence across aquatic (approximately 0.65 eV) versus terrestrial ecosystems (approximately 0.32 eV) that span broad geographic gradients in temperature. Using a model derived from metabolic theory, these findings can be reconciled by similarities in the biochemical kinetics of metabolism at the subcellular level, and fundamental differences in the importance of other variables besides temperature-such as primary productivity and allochthonous carbon inputs-on the structure of aquatic and terrestrial biota at the community level.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Yvon-Durocher, Gabriel -- Caffrey, Jane M -- Cescatti, Alessandro -- Dossena, Matteo -- del Giorgio, Paul -- Gasol, Josep M -- Montoya, Jose M -- Pumpanen, Jukka -- Staehr, Peter A -- Trimmer, Mark -- Woodward, Guy -- Allen, Andrew P -- England -- Nature. 2012 Jul 26;487(7408):472-6. doi: 10.1038/nature11205.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉School of Biological & Chemical Sciences, Queen Mary University of London, London E1 4NS, UK. g.yvon-durocher@exeter.ac.uk〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22722862" target="_blank"〉PubMed〈/a〉
    Schlagwort(e): Animals ; Biomass ; Biota ; Carbon/*metabolism ; Carbon Dioxide/*metabolism ; Cell Respiration ; Data Collection ; *Ecosystem ; *Global Warming ; Humans ; Kinetics ; Lakes ; Marine Biology ; *Oxygen Consumption ; Photosynthesis ; Rivers ; Seasons ; Seawater ; *Temperature ; Time Factors ; Trees/metabolism
    Print ISSN: 0028-0836
    Digitale ISSN: 1476-4687
    Thema: Biologie , Chemie und Pharmazie , Medizin , Allgemeine Naturwissenschaft , Physik
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Publikationsdatum: 2010-07-07
    Beschreibung: The respiratory release of carbon dioxide (CO(2)) from the land surface is a major flux in the global carbon cycle, antipodal to photosynthetic CO(2) uptake. Understanding the sensitivity of respiratory processes to temperature is central for quantifying the climate-carbon cycle feedback. We approximated the sensitivity of terrestrial ecosystem respiration to air temperature (Q(10)) across 60 FLUXNET sites with the use of a methodology that circumvents confounding effects. Contrary to previous findings, our results suggest that Q(10) is independent of mean annual temperature, does not differ among biomes, and is confined to values around 1.4 +/- 0.1. The strong relation between photosynthesis and respiration, by contrast, is highly variable among sites. The results may partly explain a less pronounced climate-carbon cycle feedback than suggested by current carbon cycle climate models.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Mahecha, Miguel D -- Reichstein, Markus -- Carvalhais, Nuno -- Lasslop, Gitta -- Lange, Holger -- Seneviratne, Sonia I -- Vargas, Rodrigo -- Ammann, Christof -- Arain, M Altaf -- Cescatti, Alessandro -- Janssens, Ivan A -- Migliavacca, Mirco -- Montagnani, Leonardo -- Richardson, Andrew D -- New York, N.Y. -- Science. 2010 Aug 13;329(5993):838-40. doi: 10.1126/science.1189587. Epub 2010 Jul 5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Max Planck Institute for Biogeochemistry, 07745 Jena, Germany. mmahecha@bgc-jena.mpg.de〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20603495" target="_blank"〉PubMed〈/a〉
    Schlagwort(e): Carbon/metabolism ; Carbon Dioxide/*metabolism ; Cell Respiration ; *Climate ; Ecological and Environmental Processes ; *Ecosystem ; Models, Biological ; Models, Statistical ; Photosynthesis ; Plants/*metabolism ; Soil/analysis ; Soil Microbiology ; *Temperature
    Print ISSN: 0036-8075
    Digitale ISSN: 1095-9203
    Thema: Biologie , Chemie und Pharmazie , Informatik , Medizin , Allgemeine Naturwissenschaft , Physik
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...