ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 1997-01-10
    Description: Resveratrol, a phytoalexin found in grapes and other food products, was purified and shown to have cancer chemopreventive activity in assays representing three major stages of carcinogenesis. Resveratrol was found to act as an antioxidant and antimutagen and to induce phase II drug-metabolizing enzymes (anti-initiation activity); it mediated anti-inflammatory effects and inhibited cyclooxygenase and hydroperoxidase functions (antipromotion activity); and it induced human promyelocytic leukemia cell differentiation (antiprogression activity). In addition, it inhibited the development of preneoplastic lesions in carcinogen-treated mouse mammary glands in culture and inhibited tumorigenesis in a mouse skin cancer model. These data suggest that resveratrol, a common constituent of the human diet, merits investigation as a potential cancer chemopreventive agent in humans.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Jang, M -- Cai, L -- Udeani, G O -- Slowing, K V -- Thomas, C F -- Beecher, C W -- Fong, H H -- Farnsworth, N R -- Kinghorn, A D -- Mehta, R G -- Moon, R C -- Pezzuto, J M -- P01 CA48112/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 1997 Jan 10;275(5297):218-20.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, Chicago, IL 60612, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8985016" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Anti-Inflammatory Agents, Non-Steroidal/pharmacology/therapeutic use ; Anticarcinogenic Agents/*pharmacology/therapeutic use ; Antimutagenic Agents/pharmacology ; Carcinogens ; Cell Differentiation/drug effects ; Cyclooxygenase 1 ; Cyclooxygenase Inhibitors/pharmacology/therapeutic use ; Female ; Fruit/*chemistry ; Humans ; Inflammation/drug therapy ; Isoenzymes/metabolism ; Mammary Neoplasms, Experimental/chemically induced/prevention & control ; Membrane Proteins ; Mice ; Neoplasms, Experimental/*prevention & control ; Peroxidases/antagonists & inhibitors ; Precancerous Conditions/prevention & control ; Prostaglandin-Endoperoxide Synthases/metabolism ; Rats ; Rats, Wistar ; Skin Neoplasms/chemically induced/prevention & control ; Stilbenes/*pharmacology/therapeutic use ; Tumor Cells, Cultured
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2005-10-22
    Description: There have been numerous recent observations of changes in the behavior and dynamics of migratory bird populations, but the plasticity of the migratory trait and our inability to track small animals over large distances have hindered investigation of the mechanisms behind migratory change. We used habitat-specific stable isotope signatures to show that recently evolved allopatric wintering populations of European blackcaps Sylvia atricapilla pair assortatively on their sympatric breeding grounds. Birds wintering further north also produce larger clutches and fledge more young. These findings describe an important process in the evolution of migratory divides, new migration routes, and wintering quarters. Temporal segregation of breeding is a way in which subpopulations of vertebrates may become isolated in sympatry.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Bearhop, Stuart -- Fiedler, Wolfgang -- Furness, Robert W -- Votier, Stephen C -- Waldron, Susan -- Newton, Jason -- Bowen, Gabriel J -- Berthold, Peter -- Farnsworth, Keith -- New York, N.Y. -- Science. 2005 Oct 21;310(5747):502-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉School of Biology and Biochemistry, Medical Biological Centre, Lisburn Road, Queen's University Belfast, Belfast BT6 7BL, UK. s.bearhop@qub.ac.uk〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/16239479" target="_blank"〉PubMed〈/a〉
    Keywords: *Animal Migration ; Animals ; *Biological Evolution ; Carbon Isotopes/analysis ; Environment ; Europe ; Female ; Hydrogen/analysis ; Isotopes ; Male ; Passeriformes/*physiology ; Regression Analysis ; *Reproduction ; Seasons ; *Sexual Behavior, Animal
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1432-1939
    Keywords: Key words Growth ; Mangroves ; Photosynthesis ; Rhizophora mangle ; Sea level rise
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Tropical coastal forests – mangroves – will be one of the first ecosystems to be affected by altered sea levels accompanying global climate change. Responses of mangrove forests to changing sea levels depend on reactions of individual plants, yet such responses have not been addressed experimentally. We report data from a long-term greenhouse study that assessed physiological and individual growth responses of the dominant neotropical mangrove, Rhizophora mangle, to levels of inundation expected to occur in the Caribbean within 50–100 years. In this study, we grew potted plants in tanks with simulated semidiurnal (twice daily) high tides that approximated current conditions (MW plants), a 16-cm increase in sea level (LW plants), and a 16-cm decrease in sea level (HW plants). The experiment lasted 2½ years, beginning with mangrove seedlings and terminating after plants began to reproduce. Environmental (air temperature, relative humidity, photosynthetically active radiation) and edaphic conditions (pH, redox, soil sulfide) approximated field conditions in Belize, the source locale for the seedlings. HW plants were shorter and narrower, and produced fewer branches and leaves, responses correlated with the development of acid-sulfide soils in their pots. LW plants initially grew more rapidly than MW plants. However, the growth of LW plants slowed dramatically once they reached the sapling stage, and by the end of the experiment, MW plants were 10–20% larger in all measured growth parameters. Plants did not exhibit differences in allometric growth as a function of inundation. Anatomical characteristics of leaves did not differ among treatments. Both foliar C:N and root porosity decreased from LW through MW to HW. Relative to LW and HW plants, MW plants had 1–7% fewer stomata/mm2, 6–21% greater maximum photosynthetic rates, 3–23% greater absolute relative growth rates (RGRs), and a 30% higher RGR for a given increase in net assimilation rate. Reduced growth of R. mangle under realistic conditions approximating future inundation depths likely will temper projected increased growth of this species under concomitant increases in the atmospheric concentration of CO2.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1432-1939
    Keywords: Rhizophora mangle ; Growth ; Photosynthesis ; Reproduction ; CO2
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Mangroves, woody halophytes restricted to protected tropical coasts, form some of the most productive ecosystems in the world, but their capacity to act as a carbon source or sink under climate change is unknown. Their ability to adjust growth or to function as potential carbon sinks under conditions of rising atmospheric CO2 during global change may affect global carbon cycling, but as yet has not been investigated experimentally. Halophyte responses to CO2 doubling may be constrained by the need to use carbon conservatively under water-limited conditions, but data are lacking to issue general predictions. We describe the growth, architecture, biomass allocation, anatomy, and photosynthetic physiology of the predominant neotropical mangrove tree, Rhizophora mangle L., grown solitarily in ambient (350 μll−1) and double-ambient (700 μll−1) CO2 concentrations for over 1 year. Mangrove seedlings exhibited significantly increased biomass, total stem length, branching activity, and total leaf area in elevated CO2. Enhanced total plant biomass under high CO2 was associated with higher root:shoot ratios, relative growth rates, and net assimilation rates, but few allometric shifts were attributable to CO2 treatment independent of plant size. Maximal photosynthetic rates were enhanced among high-CO2 plants while stomatal conductances were lower, but the magnitude of the treatment difference declined over time, and high-CO2 seedlings showed a lower Pmax at 700 μll−1 CO2 than low-CO2 plants transferred to 700 μll−1 CO2: possible evidence of downregulation. The relative thicknesses of leaf cell layers were not affected by treatment. Stomatal density decreased as epidermal cells enlarged in elevated CO2. Foliar chlorophyll, nitrogen, and sodium concentrations were lower in high CO2. Mangroves grown in high CO2 were reproductive after only 1 year of growth (fully 2 years before they typically reproduce in the field), produced aerial roots, and showed extensive lignification of the main stem; hence, elevated CO2 appeared to accelerate maturation as well as growth. Data from this long-term study suggest that certain mangrove growth characters will change flexibly as atmospheric CO2 increases, and accord with responses previously shown in Rhizophora apiculata. Such results must be integrated with data from sea-level rise studies to yield predictions of mangrove performance under changing climate.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1432-1939
    Keywords: Key words Radiation gradients ; Photosynthesis ; Confiers Shade tolerance
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract To examine the predictability of leaf physiology and biochemistry from light gradients within canopies, we measured photosynthetic light-response curves, leaf mass per area (LMA) and concentrations of nitrogen, phosphorus and chlorophyll at 15–20 positions within canopies of three conifer species with increasing shade tolerance, ponderosa pine [Pinus ponderosa (Laws.)], Douglas fir [Pseudotsuga menziesii (Mirb.) Franco], and western hemlock [Tsuga heterophylla (Raf.) Sarg.]. Adjacent to each sampling position, we continuously monitored photosynthetically active photon flux density (PPFD) over a 5-week period using quantum sensors. From these measurements we calculated FPAR: integrated PPFD at each sampling point as a fraction of full sun. From the shadiest to the brightest canopy positions, LMA increased by about 50% in ponderosa pine and 100% in western hemlock; Douglas fir was intermediate. Canopy-average LMA increased with decreasing shade tolerance. Most foliage properties showed more variability within and between canopies when expressed on a leaf area basis than on a leaf mass basis, although the reverse was true for chlorophyll. Where foliage biochemistry or physiology was correlated with FPAR, the relationships were non-linear, tending to reach a plateau at about 50% of full sunlight. Slopes of response functions relating physiology and biochemistry to ln(FPAR) were not significantly different among species except for the light compensation point, which did not vary in response to light in ponderosa pine, but did in the other two species. We used the physiological measurements for Douglas fir in a model to simulate canopy photosynthetic potential (daily net carbon gain limited only by PPFD) and tested the hypothesis that allocation of carbon and nitrogen is optimized relative to PPFD gradients. Simulated photosynthetic potential for the whole canopy was slightly higher (〈10%) using the measured allocation of C and N within the canopy compared with no stratification (i.e., all foliage identical). However, there was no evidence that the actual allocation pattern was optimized on the basis of PPFD gradients alone; simulated net carbon assimilation increased still further when even more N and C were allocated to high-light environments at the canopy top.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...